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ABSTRACT 

Having the water reclamation capacity of 70 million gallons per day (MGD) and expandable up 
to 130 MGD, the Ground Water Replenishment (GWR) System is the largest water purification 
and reuse project of its kind in the world.   With the advent of groundwater replenishment and 
reuse, a new paradigm of source control has started at the Orange County Sanitation District 
(OCSD).  Traditionally, Source Control was primarily based on enforcement and compliance of 
the EPA’s National Pretreatment and NPDES Programs.  At OCSD, Source Control has 
expanded its role to monitoring and controlling microconstituents from both point and nonpoint 
sources using two innovative methods: 1) Predictive Modeling and 2) Real-Time Modeling. 
 
As part of its expanded program to assure that the water produced by the GWR System is of the 
highest quality, Source Control has developed key programs for both predictive and real-time 
monitoring of microconstituents in source water received by the facilities.  Information from 
predictive and real-time monitoring can be used to alert facility operations of abnormalities such 
as microconstituent concentration spikes, growth trends, or reductions.  The information is also 
used as triggers for implementation of various point and nonpoint source control measures to 
reduce or smooth concentration spikes. 
 
Predictive Modeling 
Predictive modeling is based on a stochastic, time-series approach using Kalman filters and 
autoregressive integrated moving average methods such as Box-Jenkins.  These models are 
applied to microconstituent analytical data of 1) the source stream recognizing that there is a 
high potential of outliers and noise due to matrix interference and signal suppression; and 2) 
intermediate streams where noise due to matrix interference and signal suppression are 
diminished but facility dynamics come into play.   
 
Unlike conventional constituents where levels of concentrations are established or exhibit 
discernable patterns, microconstituents may follow consumer trends that may be influenced by 
competing new products, product replacement and substitution, health advisories, or consumer 
news.  Historical (past) data can potentially bias the results if it is not discarded after new 
consumer trends emerge.  Therefore, a recursive approach is necessary where the output is used 
to condition the estimate and past data is discarded. 
 
Results of the stochastic time series model are compared with economic indicators such as 
pharmaceutical sales estimates or usage statistics, and heuristics based on expert opinion and 
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product literature.  In this manner, the predictive model is tempered with real-life judgment. 
 
Real-Time Modeling 
Real-time modeling uses surrogates and analytical equipment to identify the magnitude of 
concentration and upstream locations of point and nonpoint sources or in-plant.  Statistical 
methods are employed that test for correlation of the surrogate to speciated analytical data.  If the 
surrogate concentration increases, it may indicate an increase in concentration of a family of 
microconstituents.  The use of surrogates, in effect, reduces the time and cost of tracking 
individual microconstituents.  Control and action levels for surrogates are set by a mass balance 
around the facilities using regulatory limits, standards, or guidelines and removal efficiencies 
derived analytical values of microconstituents and stream flow rates. 
 
Predictive and real-time models for microconstituents will be developed based on analytical 
results and flows from the GWR System and Reclamation Plant No. 1.  The results will be 
discussed relative to practical (day-to-day) implementation and use. 
 
KEYWORDS: Microconstituents, Groundwater Replenishment, Surrogates, Predictive 
Modeling, Real-Time Modeling, Kalman Filer, Robust Regression on Order, Dynamics. 
 
 
THE CHALLENGE – THE NEED FOR REAL-TIME DETECTION 

Microconstituent Monitoring Logistics and Frequency 
Microconstituents, also known as emerging pollutants of concern, or micropollutants, etc. occur 
at relatively low concentrations, tend to be both ubiquitous and persistent in the environment, 
and have known to unknown toxicity effects. 

At water reclamation facilities, there is an emphasis on characterizing microconstituents in the 
influent streams received by the facilities for the purpose of meeting operational objectives and 
implementing effective source control of microconstituents being discharged into the 
wastewater. 

Based on today’s analytical technology, monitoring frequency of microconstituents is a balance 
between regulatory requirements, logistics, and economics.  Sampling for microconstituents is a 
batchwise versus continuous process and consists of collecting a representative sample, then 
analyzing it, and reporting results. 

Due to practicality and economics, microconstituent sampling is typically taken infrequently 
whether it is on a monthly, quarterly, or annual basis.  This batchwise mode leaves data gaps in 
the time in-between sampling when there are no samples taken and therefore no analytical results 
reflecting microconstituent concentrations entering the treatment facilities. 

The time from sample collection to reporting results can also be significant.  At OCSD, the 
average turnaround time for analytical data is 36 days from the time that a sample is collected to 
the time that analytical data is disseminated, although there are ways to expedite turnaround 
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times. 

Implications of System Dynamics 
In consideration of the sampling frequency and turnaround time, if a significantly high 
microconstituent concentration is detected in a sample, what is the available response time to 
adjust operations or implement source control measures? 

The response time can be defined as the time that a microconstituent would take from its point of 
discharge, through the collection system, then to the start of treatment.  As an example, a 
microconstituent would flow through the: 1) regional collection system, through 2) Reclamation 
Plant No. 1 treatment processes, then through 3) microfiltration before it reaches reverse osmosis 
and advanced oxidation where it would be removed or destroyed.  

Hydraulic detention time in the regional collection system within Orange County can range from 
instantaneous to about 8 hours, averaging 4 hours. Next, wastewater from the collection system 
is received by Reclamation Plant No. 1.  At Reclamation Plant No. 1, the hydraulic detention 
time ranges from 4 hours to 8 hours, depending on the diurnal flow received by the plant.  
Diurnal flow is the daily variation in flow received by the treatment facilities.  The change in 
flow rate received by the treatment facilities is influenced by the water use habits of 2.5 million 
residents in Orange County.  During the day, people work and tend to use more water than 
during the night when they are sleeping.  Also, heavy industrial water users operate in the day.  
The flow variation at OCSD typically ranges from a 116 MGD peak at about 8:00 am to a 40 
MGD trough at about 4:00am. Finally, hydraulic detention time across the GWR System 
upstream of reverse osmosis is 40 minutes based on an estimated 2 million gallon detention 
capacity at the current rated capacity of 70 MGD. 

Thus, the average time it takes for a chemical constituent to reach the treatment facilities is 8½ 
hours versus the analytical processing time of 36 days.  If sampling is done on a daily or weekly 
basis, then the time lapse that a potential problem can be detected ranges from 15½ hours to up 
to 7 days. 

A Logistical Conundrum 
Say that 1,4-dioxine is accidentally being discharged into the collection system due from a small 
leak which is undetected at the source.  If 15.5 hours up to seven days elapse before the 
concentration spike is detected, and assuming that it is at the action level of 3 parts per billion, 
then the potential additional mass reaching treatment is 1 pound to 7.3 pounds, respectively. 

If the treatment system is operating at its design capacity, then there is risk of breakthrough.  
Although 7.3 pounds is very small compared with a reservoir which may contain 200,000 acre 
feet of water, drinking water quality regulations typically are concentration -based rather than 
mass -based. 
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SHIFTING FROM REACTIVE TO REAL-TIME, PREDICTIVE SOURCE CONTROL 

Traditional sampling is batchwise and requires turnaround time from sample collection to 
analysis that typically exceeds the hydraulic detention time of the water treatment technology 
and collection system.  Recent technology reduces turnaround time from days and weeks to 
almost instantaneous and continuous measurement. 

Analysis in Real-Time 
New analytical equipment is available which allows on-line, in stream and continuous sampling 
for parameters including total organic carbon (TOC), conductivity, pH and temperature.  TOC is 
an indicator of the presence of organics, although it lacks speciated data to define exactly what 
constituent was detected which would narrow down the sources of discharge. Conductivity is an 
indicator of the presence of salts such as metals. pH indicates presence of acids or bases. 
Temperature measurement is required for pH correction.  These real-time and continuous 
parameters help to quickly identify new trends such as an increase in concentration or narrow 
down the source of the discharge.   

Conceptually, these parameters which detect in real-time function as surrogate indicators for 
classes of chemical compounds.  A surrogate is something to take the place for another thing, in 
this case, TOC will take the place of speciated analytical data for organic compounds.  An 
indicator is a measure of difference between a reference or standard and the observation, such as 
an organic chemical grouping versus TOC which serves as a standard. 

A challenge to this technology is that it is less effective in a wastewater matrix.  A wastewater 
matrix is both corrosive and fouling, requiring constant maintenance.  Also, the wastewater 
matrix tends to cause analytical interference and signal suppression. 

Analytical equipment can be deployed in strategies areas of the treatment technology unit 
processes and collection system to reduce the time for detection.  Further, analyzing key 
parameters which may serve as surrogates will also reduce the resources and cost required to 
maintain such programs.  For example, TOC analysis can be routinely used to detect significant 
changes in organics concentration instead of running a detailed characterization for volatiles and 
semi volatiles, and base/neutral/acid organic compounds.  If an excursion is observed in the TOC 
analysis, then a detailed characterization can be performed to identify significant compounds. 

Characterization is paramount to determining the root cause of the excursion.  When analytical 
concentration is combined with flow data, the mass flux of a constituent entering the system can 
be assessed.  Also, by deploying the system in strategic areas and utilizing a geographic 
information system (GIS), the root cause may be quickly isolated to a local area. 

Forecasting Micropollutant Concentrations 
Since real-time monitoring can detect general changes in parameters instantaneously, recalling 
that the dynamics of the regional collection system ranges from instantaneous near the treatment 
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facilities to an average of 4 hours, real-time modeling is still more of a reactive element versus 
pro active.  Therefore, to have a pro-active program, making forecasts from the analytical 
concentration data is necessary. 

Advanced numerical methods have been used as a basis for forecasting in the past.  Challenges 
with respect to predicting concentrations of microconstituents are: 1) the presence of interference 
and noise in the data; 2) the impact of left-censored data on the prediction; 3) outliers and 4) the 
impact of past data that is no longer relevant.  Following is the method development for the 
predictive source control model deployed at OCSD. 

METHODOLOGY AND DESIGN BASIS DEVELOPMENT 

Numerical methods used to model microconstituent concentrations were carefully chosen based 
on defining a detailed design basis. 
 
Describing the Water Reclamation Domain Space 
Why model the influent concentration to a wastewater treatment plant (WWTP) as a stochastic 
time series process? 
 
Univariate Time Series 
By definition, a time series is an ordered sequence of observations (analytical measurements) 
made over a continuing length of time.  In the case of WWTP’s, influent concentrations of 
microconstituents such as 1,4-dioxane are periodically and continuously measured.  If the 
sequence of observations is comprised of a single set of numbers, then the time series is 
univariate. If the sequence of observations is n-dimensional vectors, then it is multivariate, and n 
is the dimensionality of the time series.  For example, consider the time series dataset of a single 
constituent, ammonia in Table 1. The data comprises a univariate time series where {ݖ , 

ݖ ,..., } = {30.1, 26.4, ... , 30.6}. 
௞ି଺

௞ିହݖ ௞

Table 1. Ammonia average daily concentration, mg/L.a 
2/18/2009 2/19/2009 2/20/2009 2/21/2009 2/22/2009 2/23/2009 2/24/2009 

30.1 26.4 30.8 30.8 30.5 28.6 30.6 
a Data is from Phase IV sampling data. 

An example of a multivariate time series would be one comprising not just ammonia 
concentrations, but nitrates, and nitrites concentrations as well. This would be a 3-dimensional 
time series where for i number of microconstituents, a datapoint observation would be 
represented as, ݖ . This paper will develop a univariate time series model, for simplification. ௜,௞

Discrete Stochastic Process 
Observations that generated a time series, such as microconstituent concentrations will continue 
into the future. Future microconstituent concentration values are of interest, and are treated as 
random. Therefore, to model these values, a model called a stochastic process based upon the 
time series is used. The word stochastic means random. 
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In probability theory, a stochastic process is the counterpart to a deterministic process. A 
deterministic process deals with only one possible outcome at a future time based on an initial 
condition.  In a stochastic process, an outcome may be one of many possible outcomes which can 
be described by a probability distribution.  This means that even if the initial condition such as a 
past observation of microconstituent concentration is known, there are many possibilities that the 
future concentration may be at, but some paths are more probable and others less. 

A stochastic process is a set of random variables or random vectors ordered with respect to time 
t. If t takes on integer values, the process is a discrete-time or discrete process. If it takes on real 
values, it is a continuous-time or continuous process.  Since microconstituent sampling is a 
batchwise versus continuous process, the domain is therefore a discrete time-series stochastic 
process. 

Time series analysis is the fitting of stochastic processes to the time series. This typically 
involves statistical analyses, but it is not a straightforward application of statistics.  Examples of 
processes modeled as stochastic time series include stock market and exchange rates, predicting 
weather, GPS navigation and autopilot, robotic vision, audio and video signals, etc. 

Stationarity 
Another criterion is if microconstituent concentration values represent a stationary process or 
non stationary process.  A stationary process is a stochastic process whose joint probability 
distribution does not change when shifted in time or space. As a result, parameters such as the 
mean and variance, if they exist, also do not change over time or position.  For example, 
analytical matrix interference is stationary, but the sound of an echo is not because it diminished 
over a period of time. 

Examples of discrete-time stationary processes with continuous sample space include 
autoregressive and moving average processes which are both subsets of the autoregressive 
moving average model, Markov chains, and the Kalman filter. 

To sum up the water reclamation domain space, water quality or more specifically 
microconstituent concentration can be described as a univariate time series, discrete stochastic 
process with stationarity.  Therefore, a Kalman filter is proposed as a predictive model. 

Kalman Filter 
What is a Kalman filter?  A Kalman filter is a recursive filter that estimates the state of a linear 
dynamic system from a series of noisy measurements (Welch Greg, et. Al., 2006).  Signal noise, 
for example, is fluctuation and external factors added to a datastream signal received by a 
detector, such as an analyzer.  The receiving device can also be source of more signal noise.  
Data is corrupted with this noise.  Kalman filters are a means to filter noise from data.  A good 
filtering algorithm can filter the noise from a datastream while still retaining useful information.  
Rudolph E. Kalman is credited in publishing the algorithm and approach in 1960 in his landmark 
paper, “A New Approach to Linear Filtering and Prediction Problems” (Kalman, R.E. 1960). 
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Kalman filters were initially used largely for data compression algorithms in weather satellite 
communications in the early 1960’s.  Since then, Kalman filters are commonly used as predictors 
for the stock market and econometrics, robotic navigation and visualization and computer 
animation, to name a few. 

The Kalman filter is ideally suited for stochastic, time series systems or domains, which is why it 
can be applied to filtering the noise in analytical data of microconstituents (Stacklin, Christopher, 
2008)(Stacklin, Christopher and Evangelista, Jerry, 2008).  Contributors to noise in the analytical 
data are variations in analytical methodology, matrix interference and signal suppression.  
External factors are changes in influent flow rate, accidental or illegal discharges of chemicals, 
and behavioral factors of dischargers.  A potential stumbling block to the application of Kalman 
filter or any other time series analysis is that the analytical data of microconstituents is left-
censored. 

Non Detect and Data Analysis 
Analytical data frequently are left-censored due to detection limits of laboratory methods. Left-
censored means that some of the observations are known only to fall below a censoring point 
commonly known as a method detection limit or reporting limit, where the concentration is 
reported as a non detect.  A non detect value simply means that the concentration of a 
microconstituent may be at or below the method detection or reporting limit.  It can even be zero.  
As an example, a non detect value of <2.0 mg/L means that the concentration is at or between 
zero and 2.0 mg/L.  This presents difficulties in statistical analysis of the data. 

In the past, people have been dealing with non detect values by simply substituting the non 
detect with one half or the full value of the method detection or reporting limit (Helsel, Dennis 
R., 2006b).  Since microconstituents by definition are detected at relatively low concentrations, 
substitution can bias the results significantly (Helsel, Dennis R., 2005c).  Fortunately, there are 
several methods available for dealing with non detect values that will minimize biasing the data. 

What are among the best methods for handling non detect data for microconstituent datasets?  
Estimating descriptive statistical methods are Kaplan-Meier (KM), Robust Regression on Order 
Statistics (ROS), and Maximum Likelihood Estimate (MLE) (Helsel, Dennis R., 2005a)(Helsel, 
Dennis R., 2005d) (Singh, Anita and Nocerino, John, 2006).  Note that descriptive statistics are 
distinguished from inductive statistics in that they aim to quantitatively summarize a data set, 
rather than being used to support statements about the population that the data are thought to 
represent.  Key attributes of these methods are:  1) the KM is a non parametric method and does 
not yield values for non detects; 2) Robust ROS and MLE are parametric methods; 3) MLE 
requires larger datasets then KM and Robust ROS for accuracy. 

For time series algorithms such as Kalman filters to work properly, non detects must be 
converted to values, therefore parametric methods are required.  Therefore, KM cannot be used, 
leaving Robust ROS and MLE.  Since Kalman filters use small datasets to reinitialize or restart 
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due to trend changes and microconstituent datasets by nature will tend to be smaller, the method 
selected for data preprocessing for the Kalman filter is Robust ROS. 

Robust Regression on Order Statistics 
An ordinary least squares (OLS) regression estimate assumes that the error term has a constant 
variance or that observations are drawn from identical distributions.  If the error term varies with 
each observation as is typically the case with time-series measurements, then this reflects that the 
random variables have different variances.  Outliers can have the same influence.  Therefore the 
domain is heteroskedastic. 

Heteroskedasticity does not cause OLS coefficient estimates to be biased nor inconsistent. 
However, the variance (and, thus, standard errors) of the coefficients tends to be underestimated, 
inflating t-scores and sometimes making insignificant variables appear to be statistically 
significant.  To circumvent underestimation, robust regression is required (Helsel, Dennis R., 
2005a). 

Implementation of Robust ROS 
Details of Robust ROS calculations are described in, Nondetects and Data Analysis: Statistics for 
Censored Environmental Data (Helsel, Dennis R., 2005a). The basic steps to implement Robust 
ROS are to rank, test, and convert the data for lognormal, normal, or root mean square 
distribution (Shumway, et. Al.  2002); determine the probability of non detects and regress their 
values from the distribution (Helsel, Dennis R., 2005a).  When the values of the nondetects are 
defined, the dataset can be then processed by the Kalman filter. 

Implementation of the Kalman Filter Model 
Note that the Kalman filter algorithm herein includes zeroth, first, and second order filters. A 
zeroth order filter is good for smoothing the data, e.g., removing the noise to discern general 
trends.  The second order filter is better a predicting values.  A second order Kalman filter with 
restart will be even better at predicting values, but will be described in another paper. 

The measurement of the variable, ݖ௞ represents a measured concentration value of a 
microconstituent.  The Kalman filter for sequential least squares estimating (Sorenson, H.W., 
1970) starts with the definition of the minimum mean square estimator, 

ො௞|௞ݔ ൌ ො௞|௞ିଵݔ ൅ ௞ݖ௞ሺܭ െ ො௞|௞ିଵሻݔ௞ܪ

ො௞|௞ݔ
ො௞|௞ିଵݔ
௞ܭ
௞ݖ
௞ܪ

      (1) 

Where 
  = Minimum mean square estimate 
  = Predicted estimate 
  = Gain matrix 
  = Measurement of the variable 
  = Observation matrix 
 k = Measurement number 
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The gain matrix is defined by, 

௞|௞ܭ ൌ ௞ܲ|௞ିଵܪ௞்ൣܪ௞ ௞ܲ|௞ିଵܪ௞் ൅ ܴ௞|௞൧
ିଵ

௞ܲ|௞ିଵ
௞்ܪ
ܴ௞|௞

௞ܲ|௞ ൌ ௞ܲ|௞ିଵ െ ௞ܲ|௞ିଵܪ௞்ൣܪ௞ ௞ܲ|௞ିଵܪ௞் ൅ ܴ௞|௞൧
ିଵܪ௞ ௞ܲ|௞ିଵ ൅ ܳ

௞ܲ|௞

ො௞|௞ିଵݔ ൌ ො௞ିଵ|௞ିଵݔ௞|௞ିଵ׎

௞|௞ିଵ׎
ො௞ିଵ|௞ିଵݔ

௞|௞ିଵ

ሾ1ሿ

ቂ1 1
0 1ቃ

൥
1 1 0
0 1 1
0 0 1

൩

௞

ሾ1ሿ

ሾ1 0ሿ

ሾ1 0 0ሿ

௞ ௞

ܴ௞ ൌ ଶߪ ൌ ∑ ሺ௭ೖି௫ҧሻమ೙
ೖసభ

௡

     (2) 

Where 
  = Covariance of error in the predicted estimate 
  = Transpose of the observation matrix 
  = Variance of values from the estimate 

Covariance of the estimator error or matrix inversion lemma, 

  (3) 

Where 
 = Covariance of error in the estimate 

Q = Model variance error 

The predicted estimate can be found using the transition matrix such that, 

       (4) 

Where 
    = Transition matrix 
 = Previous best estimate 

The transition matrices, ׎  for the zeroth, first and second order filters are, 

          (5) 

          (6) 

         (7) 

Corresponding observation matrices, ܪ  for the zeroth, first and second order filters are, 

          (8) 

          (9) 

         (10) 

To initialize the estimator, ܴ  is the median of the variances (bias) of n joint observations. ܴ  
will remain constant for any k. The sample variance (bias) of n measurements is, 

       (11) 

 Where 
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ҧݔ  ൌ ∑ ௭ೖ೙
ೖసభ
௡

        (12) 

he previous cova

   (13) 

Covariance of erro

   (14) 

The predicted estimate

      (15) 

After initialization, the fu

ression on Order 
Figure 1 shows the results of the application of Robust ROS to the Estriol dataset.  Note that 

rmone therapy. Out of the 35 datapoints, 13 are non detects 

 

T riance of error in the estimate 

௞ܲିଵ|௞ିଵ ൌ ܴ௞ܺ ′ܺ     

r of the predicted estimate is, 

௞ܲ|௞ିଵ ൌ ׎ ௞ܲିଵ|௞ିଵ்׎    

 is, 

ො௞|௞ିଵݔ ൌ  ො௞ିଵ|௞ିଵݔ௞|௞ିଵ׎

ll equations may be used. 

RESULTS 

Robust Reg

Estriol is used for estrogenic ho
which represents 13% of the data.  The red line shows the regressed non detect values. 
 

Figure 1. Robust ROS results for Estriol. 
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Summary statistics are presented in Table 2.  Note that substitution of ½ of the method detection 
limit and maximum likelihood estimate indicate poor results.  In this case, the maximum 
likelihood estimate is off due to the small number of observations.  The Kaplan-Meier statistics 
look good and is useful for small datasets.  Unfortunately, Kaplan-Meier is non parametric, e.g., 
non detect values cannot be derived from the method. 
 
Table 2. Summary statistics for Estriol. 
Method Mean Std. Deviation UCL 95% 
Detected Values 0.298 0.099 - - - 
Substitution ½ Detection Limit 0.191 0.162 0.237 
Kaplan-Meier 0.228 0.119 0.263 
Robust ROS 0.232 0.118 0.264 
Maximum Likelihood Estimate 0.140 0.231 0.206 

 
 
Figure 2 shows the results of the application of Robust ROS to the Bisphenol A dataset.  Note 
that Bisphenol A is a chemical building block that is used primarily to make polycarbonate 
plastic and epoxy resins. Out of the 35 datapoints, 6 are non detects which represents 17% of the 
data.  The dotted red line shows the regressed non detect values. 
 

 
igure 2. Robust ROS results for Bisphenol A. 
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Summary statistics are presented in Table 3.  Again, substitution of ½ of the method detection 
limit and maximum likelihood estimate indicate poor results.  The Kaplan-Meier is better, 
followed by Robust ROS statistics. 
 
Table 3. Summary statistics for Bisphenol A. 
Method Mean Std. Deviation UCL 95% 
Detected Values 1.283 1.248 - - - 
Substitution ½ Detection Limit 1.065 1.232 1.417 
Kaplan-Meier 1.113 1.177 1.455 
Robust ROS 1.093 1.209 1.437 
Maximum Likelihood Estimate 0.921 1.400 1.321 

 
 
Kalman Filter 
Kalman filter results are presented below.  The Kalman filter results presented are based on a 
second order filter with no reset.  Microconstituent concentrations (observed values) are 
indicated by a diamond, .  Predicted values are indicated by a red line, . 
 
Estriol is shown in Figure 3 with the residual sum of squares (RSS) value at 0.06. The RSS is a 
measure of the discrepancy between the data and an estimation model. A small RSS indicates a 
tight fit of the model to the data. The Kalman filter results are also shows for Bisphenol A with 
the RSS of 4.75. 

 
Figure 3. Kalman filter results for Estriol. 
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Figure 4. Kalman filter results for Bisphenol A.
 

 

Kalman filter versus Moving Average 
Figures 5 and 6 compare the Kalman filter results versus two other discrete time series methods, 
simple moving average (simple MA) and exponential moving average (exponential MA), cousin 
methods to ARIMA Box-Jenkins.  Both methods are very fast and easy to implement in contrast 
to the Kalman filter.  However, the results in Table 4 show that the Kalman filter is a much better 
fit in both cases. 
 
 
Table 4. Comparison of RSS values of time series methods. 
Microconstituent Simple MA Exponential MA Kalman Filter 
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Estriol 0.33 0.20 0.05 
Bisphenol A 12.17 12.37 1.58 
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Figure 5. Kalman filter results for Estriol. 
 

 
Figure 6. Kalman filter results for Bisphenol A. 
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TOC as a Surrogate Indicator 
It was originally proposed that TOC be used as a surrogate indicator for microconstituents.  
However, the concentration of TOC at the influent to Reclamation Plant No. 1 averages 80 mg/L.  
The high TOC concentration relative to the concentration of a microconstituent which may be 
several orders of magnitude lower than TOC (in the µg/L to ng/L range) would make discerning 
any relevance very difficult.  For example, if the average microconstituent concentration was 50 
µg/L, then a microconstituent would constitute about six onehundreths of a percent of the TOC. 

 

Figure 7. TOC at Reclamation Plant No. 1 versus GWR System influent. 

 

In contrast, the TOC level of the secondary effluent to the GWR System is much lower and 
averages below 20 mg/L.  In this case, an average microconstituent would constitute about one 
quarter of a percent of the TOC. The wastewater matrix is also much cleaner.  Therefore, it may 
be possible to correlate microconstituent values with TOC based on downstream locations such 
as immediately upstream of reverse osmosis.   

CONCLUSIONS AND DISCUSSIONS 

Real-Time Monitoring 
 over batchwise sampling, the advantage 
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While real-time monitoring has a distinct advantage
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gained is limited to the dynamics of the collection system and the treatment system which may 
tive 

location allows for a cleaner matrix to analyze and the TOC value is proportionally closer to the 
sum of the microconstituent values.   

TOC values can be collected in real-time.  By converting the TOC continuous telemetry data to 
discrete data, a Kalman filter can be used to predict future concentrations.  If the TOC 
concentration is predicted to rise significantly, then the TOC is required at the influent to the 
plant to determine a mass-based removal efficiency.  If the removal efficiency is negative, then 
the TOC is being added or created inside of the treatment processes.  If the removal efficiency is 
positive, then the TOC is being added from the collection system. 

TOC analyzers coupled with Kalman filters can be located on the regional trunk lines and pump 
stations in strategic locations allowing geographic localization of the potential cause of the 
fluctuation.  If the TOC concentration is uniformly increased, then the source is ubiquitous.  
Therefore a general outreach program, or certification program, or product ban may be 
considered to achieve a reduction.  If the source is localized, then a targeted outreach program, 
certification, or permitting of a point source or commercial market sector may be considered.  
The TOC results can be integrated with a Geographic Information System and Chemical 
Inventory Program to localize the source quickly. 

Predictive Kalman Filter 
Based on the domain space definition, a Kalman filter was proposed and demonstrated as a 
model to predict future microconstituent concentrations.  It is important to note that the predicted
concentration must be converted to a mass value using flow rate in order to have real relevance.  

entration of a 
icroconstituent which is approaching an action level, say 20 ng/L equates to 12 pounds per day 
 a 70 MGD treatment facility.  Finding a 12 pound per day source within the treatment facility 

 puts 

 forecast by rationalization.  This can be done by 
nds, marketing growth cycle, publicity and most of all, common sense.  

cs. 

average only 8 ½ hours.  When real-time modeling is coupled with Kalman filters, the predic
model can extend upward to a week or more, depending on discharge habits. 

It may be possible to use TOC as a surrogate indicator, e.g., correlate TOC to microconstituent 
values, but immediately upstream of reverse osmosis and advanced oxidation processes and 
downstream of primary and secondary treatment.  Placing in-stream TOC monitoring at this 

 

A mass value establishes the magnitude of the condition.  For example, a conc
m
in
or being discharged into the collection system can be very challenging.  Hence the mass rate
things into perspective. 

The Kalman filter predictor should only be used for near-term prediction initially until a 
thorough understanding of the behavior of the dynamics of the system is gained. 

Tempering Prediction Using Heuristics  
It is very important to temper any mathematic
considering economic tre
These are experience-based techniques that help in problem solving and are known as heuristi
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Complex rules can be chained together using a Bayesian decision model to form an assessment 
or decision (Winkler, Peter, 2000). 

Figure 8 is based on a simple, quick and dirty econometric forecast for the discharge of Estriol in 

s 
tion 

 
pact of the FDA’s position on the benefits of hormone 

 

main Space 

Orange County.  The econometric model considers economic criteria to determine Estriol 
demand. The waste mass load of Estriol received at OCSD was allocated on a per capita basi
based on the female population in Orange County at the time of sampling. The female popula
growth forecast in Orange County is factored in as well as the gross domestic product growth (or
decrease) and an assessment of the im
treatment theory drugs. 

Figure 8. Econometric forecast of Estriol in wastewater discharged in Orange County. 
 
CONCLUSIONS 
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Water quality or more specifically microconstituent concentration can be described as a 
univariate time series, discrete stochastic process with stationarity. 

Real-time Modeling 
Real-time modeling of water reclamation treatment processes and is possible with recent 
technology innovations, but the benefits do not allow enough lead time for pro-active operational 
and source control programs.  Real-time modeling can provide a finite amount of lead time 

Copyright ©2009 Water Environment Federation. All Rights Reserved. 



WEFTEC®.09 

which could range from hours to as much as a day depending on system dynamics. 

Predictive Modeling 
It was demonstrated that a Kalman filter can be used to provide near-term prediction of 
microconstituent concentrations ranging from days to weeks depending on the behaviors o
dischargers. 

Robust ROS, an estimating descriptive statistical method, was used to regress values for non 
detects in the analytical datasets while minimizing any biasing of the descriptive statistics.   

Results from the Kalman

f 

 filter predictive model can be tempered using an econometric, heuristic 
model that describes local demographic trends and subjective impacts, e.g., consumer news, 
regulations, etc.  Figure 9 shows the predictive model. 

 

oconstituent concentration and source control. 

owing people. Without their support, this paper would not be possible: 
l 

Figure 9.  Predictive model for micr
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