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Executive Summary 

 
 

• Quantitative Structure Activity Relationship (QSAR) molecular descriptors were 

calculated for over 200 organic compounds, mostly of public health concern. 

• Using cluster analysis methods, 51 surrogate compounds were identified from this 

master compound list representing a wide range of molecular properties. 

•  The compound-membrane interactions between these 51 surrogates with four 

commercial polyamide (PA) membranes and one commercial cellulose acetate 

(CA) reverse osmosis (RO) membrane were determined using radiolabeled forms 

of the surrogate compounds and a small radiometric membrane performance 

(RMP) assay pressure cell. 

• Use of radiolabeled tracers allowed quantification of three basic compound-

membrane interactions: 1) passage of the compound through the membrane (P-

Flux), 2) adsorption or absorption of the compound to the membrane (M-Flux) 

and 3) reflection of the compound back to the feed side of the membrane (R-

Flux). 

• The PA membranes generally interacted with the test compounds in a similar 

fashion.  

• Using the measured flux data for all the membranes and the calculated QSAR 

molecular descriptors, a successful empirical model was constructed describing 

each compound-membrane interaction for each of the test membranes using a 

genetic algorithm (GA) to select specific molecular descriptors affecting the 

interaction and an artificial neural network (ANN) to describe the specific 

relationship between the descriptor set and the interaction. 

• A set of “Universal” PA ANN models were successfully constructed by 

combining data from each of the individual PA ANN models.  Although several 

specific membrane parameters (specific water flux, zeta potential, contact angle, 

indices of crosslinking) were included as potential inputs to this model, the GA 

did not select any of them, suggesting the variations between compound structures 

were more predictive than the variations in these membrane parameters. 



 xvi 

• Behavior of the “Universal” PA models in general mirrored the behavior of the 

individual PA membrane models. 

• Molecular descriptors included by the ANN models included those describing 

molecular charge/polarity, molecular complexity, hydrogen bonding and 

hydrophobicity. 

• There was variation in the exact descriptors included in each of the models across 

membrane types; CA differed from PA, and within the four PA membranes (and 

with the “Universal” models), inputs differed. 

• However, there were some commonly included descriptors in the models between 

membranes and between interactions.  Notably, descriptors related to electrophilic 

interactions (Gmin), molecular dipole and quadripole moments (P, Py and Q), 

hydrogen bonding (numHBa) and hydrophobicity (LogP) were used by multiple 

models. 

• Behavior of all 202 compounds in the master compound list was modeled; 

predictions passing a “virtual mass balance” criterion based on the summation of 

mass fluxes achieving ±25% of the original feed flux was used to validate 

predictions.  Based on this criterion, behavior of between 57% and 70% of the 

master list compounds were successfully predicted by the ANN models. 

• The “Universal” PA models were able to describe ~76% of the compounds within 

this criterion. 

• Percent rejection was estimated based on the predicted P-Flux and R-Flux values.  

Many pharmaceutically active compounds (PhACs) and disinfection byproducts 

(DBPs) were predicted to be highly rejected, especially by PA membranes.  

However, in many cases, a significant component of rejection involved 

adsorption/absorption to the RO membrane material.  Tables of rejection data are 

presented for each membrane, and for the “Universal” PA models. 

• Percent rejection determined from the P-Flux predictions of theANN models 

agreed favorably with values published in the literature or observed in the field. 

• Failures of the models were associated with specific compounds; an iterative gap 

analysis process was suggested that could converge on a more robust set of 

models by choosing additional surrogates from the failed compounds 
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• A computer program was written to automatically build fully-atomistic, 

geometry-optimized models of a polyamide (PA) reverse osmosis membrane 

useful for molecular dynamics (MD) simulation of the free diffusion behavior of 

1,1,2,2-tetrachloroethylene (PCE) and nitrosodimethylamine (NDMA).  

• Although the simulations were of relatively short duration, typically 200 

picoseconds (ps), differences were evident in the behavior of the two organics; 

NDMA exhibited two “jump” events involving rapid long-range (~7Å) excursions 

from the origin at t = 0 ps whereas PCE did not in the time period. 

• Calculated solute fluxes based on root mean square (RMS) displacements of local 

diffusion were much greater than experimental values, although calculated water 

fluxes agreed with those expected for PA membranes. 

• Two factors contributed to overestimation of organic fluxes:  (i) inability to 

account for solute jump frequencies in the short duration simulations, and (ii) 

likely overestimation of solute partition coefficients. 

• Although NDMA and PCE diffusivities were nearly identical in pure-water 

simulations, there was a 4-fold reduction of PCE diffusion in the membrane 

system relative to NDMA, suggesting greater interaction of PCE with the 

membrane.  The results agreed relatively with the laboratory observations in this 

study for these two compounds and PA membranes. 

• Analysis of simulation playbacks revealed NDMA associated more with water 

and polymer atoms than did PCE.  The relative lack of a hydration field around 

PCE may contribute to stronger long-range electrostatic interactions with 

membrane atoms resulting in lower diffusivity and higher rejection for this 

compound. 

• An idealized PA membrane pore model is proposed that may be able to rapidly 

estimate and compare solute-membrane interaction potentials. 
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Abstract 

 
 
In this study, 51 radiolabeled surrogate compounds selected from an initial compound list 

of over 200 organic compounds, mostly of public health concern, were used to construct 

a series of quantitative structure activity relationship (QSAR) based empirical 

multivariate models describing the interaction of the compounds with several commercial 

polyamide (PA) and cellulose acetate (CA) reverse osmosis (RO) membranes.  Models 

were constructed using artificial neural networks (ANNs) based on data obtained from 

calculated QSAR molecular descriptors and direct measurements of compound-

membrane associations.  The penetration of molecules through the membranes, the 

adsorption/absorption of molecules on/in the membranes and the rejection of molecules 

at the feed/membrane interface were associated with molecular properties that included 

charge/polarity, structural complexity, hydrogen bonding and hydrophobicity.  Percent 

rejection, calculated from the ANN model predictions, compared favorably with 

published values.  Models developed in this study were capable of predicting the 

compound-membrane interactions of 57% to 70% of the organics in the initial compound 

list.  In addition to the individual membrane models, a “Universal” PA model was 

constructed from individual PA membrane performance data capable of predicting the 

compound-membrane interactions for 76% of the compounds.  A gap analysis that could 

improve model performance was discussed.  A fully-atomistic geometry-optimized model 

of a PA membrane was created and used to study the free diffusion behavior of 1,1,2,2-

tetrachloroethylene (PCE) and N-nitrosodimethylabine (NDMA).  Predicted PCE 

diffusion was 4-fold less than NDMA.  This result agreed in general with the relationship 

between PCE and NDMA relative membrane fluxes; however, absolute values were 

much overestimated compared to laboratory results, although water flux measurements 

were not.  Movement of compounds through the membrane by low-frequency, longer- 

range “jumps” as opposed to local diffusion and underestimation of the solute partition 

coefficients may account for the discrepancies.   A simplified membrane model system 

using a single PA membrane “pore” to speed investigation of compound-membrane 

interactions is proposed. 
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1 INTRODUCTION 
 
1.1 Background 
 
Ultra-low-pressure reverse osmosis (RO) and nanofiltration (NF) membrane processes 

are arguably the most cost-effective modern technologies for removing trace organic and 

inorganic constituents from water.  Because of their favorable energy efficiencies, 

flexible engineering design and scale-up, and ability to remove a wide range of low-

molecular-weight (LMW) organics, membrane processes are increasingly being 

employed in drinking water purification and water reuse applications worldwide.  

Whereas their overall performance can be modeled with considerable precision, the 

mechanisms by which organics and other substances are transported across or rejected by 

these semi-permeable membranes are still incompletely understood (Weisner and 

Buckley, 1996).   

 

The ability of RO membranes to remove organic contaminants such as pharmaceutically 

active compounds (PhACs) and endocrine disrupting compounds (EDCs) from drinking 

water supplies is very desirable because of the potential health risk posed by these 

substances.  This issue has been widely reported in the literature (Drewes et al., 2002; 

Hileman, 2001; Kolpin et al., 2002; Schafer et al., 2003).  It is currently recognized that 

molecular mass and size of organic compounds are perhaps among the most significant 

factors in determining how well they are rejected by any given RO membrane.  In 

general, compounds exceeding a molecular-weight cutoff (MWCO) value of about 300 

Daltons are rejected well by most RO membranes regardless of their other inherent 

molecular properties.   Almost all of the compounds categorized as EDCs or PhACs have 

molecular weights of >200 Da. (Kimura et al., 2003), although some EDCs with 

molecular weight near 300 such as 17β-estradiol (MW = 279g/mol) may be detected in 

RO permeate at very low concentrations (Salveson et al., 2000).   For compounds that lie 

below the MWCO value for a particular membrane type, rejection and transport 

behaviors are based on a host of other compound molecular properties.  Together, these 

molecular properties determine the nature of the compound’s interaction with the solvent 

phase (typically water), dissolved salts and other organics, and the polymer membrane 
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matrix, which in turn determines the diffusion rate and transport behavior of the organic 

compound.  Some of the molecular properties (also referred to as attributes or 

descriptors) that may affect a compound’s transport across RO or NF membranes include 

shape, hydrophobicity, partial atomic charges and their distribution, molecular orbital 

shapes, reactive centers and locations of electron and recipient donor atoms, bonding 

arrangements, atom types, dipole moment, ionization potentials, etc. 

 

A few efforts have been made to identify relationships between molecular structure and 

the ability of an organic compound to pass through modern RO or NF membrane 

materials.  Huang and Negishi (1993) examined the transport behaviors of aliphatic acids, 

alcohols, and amines for a series of experimental cellulose acetate derivative RO 

membrane materials.  It was found that for n-alkyl organics, solute rejections firstly 

increased with alkyl chain length, reaching a maximum at about three carbons atoms, and 

then decreased thereafter or remained stable.  Branched compounds were rejected best, 

presumably due to steric hindrances as they interacted with the polymer matrix.  

According to Matsuura and Sourirajan (1971) for a given membrane material and 

structure, polar effects constitute one of the most  important physicochemical criteria  

governing reverse osmosis separation of organic solutes.  They developed and confirmed 

a method for estimating Taft numbers for polyhydric alcohols, and used this technique to 

predict solute transport of alcohols, aldehydes, and carbohydrates in porous cellulose 

acetate membranes.  Several investigators have reported that organic removal from 

membranes depends highly on the degree of compound ionization.  It has been found that 

formic acid removal by the NS-100 membrane varied from ~ 6% when partially 

undissociated to 98% when dissociated completely (Fang and Chian, 1975).  

 

The nature of the membrane material itself greatly influences the types and the degree to 

which organic compounds are rejected.  For example, Reinhard and coworkers (1986) 

reported that both polyamide thin-film composite (TFC) membranes as well as blend 

cellulose acetate membranes tended to reject branched complex organic molecules 

including neutrals, bases, acids, and phenols.  However, various halogenated DBPs and 

chlorinated solvents were only rejected significantly by the TFC membranes.  Membrane 
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properties that affect compound rejection include surface charge and charge distribution, 

degree of polymer crosslinking and polymer mobility, overall thickness, hydrophobicity, 

density, surface morphology, hydration energy, and other factors.  The trend in recent 

years to make membranes with lower operating pressures has generally resulted in 

somewhat poorer organics rejection.  Lipp et al. (1994) showed that when using FT-30 

membranes, the transmembrane pressure drop, ion composition, ion concentration and 

pH have an influence on the solute and salt rejection.  An increase in pH increases the 

solute rejection and an increase in the ion concentration decreases the solute rejection. 

 

The rejection exhibited by membranes is also strongly influenced by the nature of the 

fouling layer that develops.  Schafer and coworkers (2000) recently reported that the 

rejection of LMW organic acids by a series of microfiltration, ultrafiltration, and NF 

membranes was dependent on the type of deposit on the membrane surface.  Positively 

charged ferric chloride precipitates on the membrane surfaces were found to improve the 

rejection of cationic species but reduced the rejection of LMW organic acids present in 

natural organic matter (NOM).  

 

Given the effects of natural fouling layers on rejection, it is not surprising that purposeful 

modification of membrane surfaces also has met with some success in terms of 

improving the rejection of organics.  For example, Kilduff et al. (2000) reported recently 

that ultraviolet (UV)-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto 

sulfonated polyethersulfone NF membranes not only helped to mitigate NOM fouling, 

but also could under certain circumstances leave NOM rejection and water flux relatively 

unaffected.  On the other hand, when the same membranes were simply UV irradiated in 

the absence of graft polymerization to increase surface hydrophilicity and wettability, the 

degree of NOM rejection was diminished significantly. 

 

The foregoing examples suggest it is theoretically possible to predict the membrane 

transport or rejection behavior of organic compounds from a knowledge of their 

fundamental molecular attributes.  However, since more than one molecular attribute may 

influence a compound’s ability to penetrate a semi-permeable membrane barrier and 
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diffuse through it, multivariate statistical procedures such as multiple linear regression 

analyses or artificial neural network (ANN) analyses are required to accurately model the 

phenomenon.  Such a multivariate statistical approach which seeks to correlate some 

minimum set of independent molecular descriptors with molecular activity or function 

(i.e., membrane transport or rejection) is referred to as quantitative structure-activity 

relationship (QSAR) analysis.  The predictive statistical model developed from this 

analytical approach is referred to as a QSAR model.  Because of the multitude of 

interacting solute-membrane factors, QSAR models describing organics rejection by 

membranes will very likely turn out to be specific to a particular membrane type.  Thus, 

multiple models will be needed for a series of membrane materials.   

 

In recent years, QSAR models have been successfully developed for a variety of 

experimental systems involving complex bio-organic interactions.  For example, Carroll 

et al. (1994) developed QSAR models for predicting the potency of dopamine binding 

inhibitors by various natural cocaine derivatives (e.g., 3B-(substituted phenyl)tropane-2B-

carboxylic acids).  Many physical and chemical material properties of natural and 

synthetic polymers can be predicted with reasonable accuracy (typically >85%) using 

QSAR type models based on molecular group contribution and topological (graph theory) 

techniques (Bicerano, 1996).  More recently, Campbell et al. (1999) working at OCWD’s 

Water Factory 21, developed regression-based QSAR models to predict the effectiveness 

of charged and neutral surfactants for inhibiting the attachment of fouling bacteria to TFC 

and cellulose acetate RO membranes.  Because the surfactants examined interacted 

differently with each membrane chemistry, separate QSAR models were developed for 

polyamide TFC and cellulose acetate membranes. 

 

We proposed to apply multivariate (ANN-based) techniques to create QSAR models that 

could accurately describe and predict the rejection of organic compounds by several 

modern commercial TFC membranes.  The project focused on those compounds that 

exhibit a potential for negatively impacting human health or the environment.  The 

compounds of most interest include a host of endocrine disruptors, human and animal 

antibiotics, DBPs, insecticides and herbicides, and various neuroactive drugs (e.g., 
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aspirin, anticancer agents, etc.).  Many of these compounds have been found in recent 

years to enter natural ecosystems at still bioactive concentrations by way of sewage 

outfalls and urban runoff. 

 

Although research on RO membrane performance is extensive, the majority of studies 

have relied upon empirical observations to formulate and bolster theoretical precepts of 

membrane structure and function.  Indeed, until very recently, membranes were treated as 

structurally and chemically homogeneous “black boxes.”  However, recent ultrastructural 

studies of PA membranes have revealed that they are chemically and structurally 

asymmetric (Figs. 27 and 28; Freger, 2003).  The observed chemical and structural 

asymmetry of PA membranes is believed to result from differential rates of diffusion of 

the reactive monomers into the incipient membrane during the interfacial polymerization 

reaction.  Because of the morphological complexity of TFC membranes, compelling 

ultrastructural or experimental evidence is lacking as to the exact location of the solute-

water separation layer.  Other unknowns concerning the PA membranes include the 

surface and bulk charge distribution, polymer density as a function of membrane depth, 

and water content.  Such uncertainties have hindered our efforts to fully validate 

atomistic models of PA membrane materials and underscore a strong need to better 

characterize the membranes experimentally.  Unfortunately, apart from microscopy, there 

are few analytic techniques able to effectively probe PA membrane substructure at the 

nanoscale, a consideration that has in recent years prompted efforts to model the structure 

and functionality of the PA separation layer. 

 

Atomistic modeling of small-molecule sorption and diffusion in the PA layer is complex.  

In contrast to simulations of simple gas solutes where solute-solute and polymer-solute 

interactions can be often neglected, RO simulations must account for specific 

interactions, such as water-water, water-solute, water-polymer and solute-polymer 

interactions (Kotelyanskii et al., 1998).  In addition, models need to accurately describe 

the physical and chemical characteristics of the aromatic crosslinked PA thin film of 

current RO membranes.  Key properties include density, hydrogen bonding and water 

sorption capacities, and concentrations of crosslinks and functional groups (e.g., 
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unreacted free amine and carboxylic acid).  Due to insufficient experimental data, it is not 

surprising that the literature on atomistic modeling of RO membranes and water sorption 

in polyamides is limited.  Important studies in this field are those by Knopp and Suter 

(1997a, 1997b) and by Kotelyanskii et al. (1998, 1999). 

 

Knopp and Suter (1997a) developed a method based on atomistic models to calculate the 

excess chemical potential of a solute in dense polymer microstructures.  The technique 

consists of combining two well-established procedures for determining excess chemical 

potentials such that the shortcomings associated with each individual method are 

minimized.  Consequently, the technique can then be applied to a wider range of solute-

polymer systems.  This hybrid method was successfully tested in separate studies using 

water as the solute and polyamides (Knopp and Suter, 1997b), bisphenol-A-

polycarbonate and polyvinyl alcohol (Nick and Suter, 2001), as the polymers.  The 

difference between the calculated excess chemical potential of water in a given polymer 

and the excess value of pure water can be used to give an initial prediction of the 

equilibrium water sorption capability of that polymer. 

 

In simulations of PA films, information on the water content within the polymeric matrix 

is crucial for the success of the atomistic model.  Although Knopp and Suter (1997a, 

1997b) evaluated their method on PAs unlike the typical crosslinked aromatic PA used in 

RO membranes, valuable insight can be still obtained about the accuracy of the technique 

and its potential in simulations of RO systems.  In comparison to experimental data, this 

method was able to reasonably predict the variation in sorption values between two linear 

PAs that differ from each other only in the number of amide bonds.  However, it failed to 

recognize sorption differences between two PAs with the same number of amide bonds, 

but different chemical structure.  The authors concluded that the force field used in the 

simulation must correctly model chemical structure differences such that they will be 

reflected in the estimated sorption values.  It was also found that equilibrium sorption of 

water cannot be described by a simple function of the concentration of amide groups. 
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Kotelyanskii et al. (1998, 1999) performed atomistic simulations of water and salt 

transport in the aromatic polyamide film of an FT-30 RO membrane in order to obtain 

information about diffusion and rejection mechanisms.  Specific objectives of these 

studies included the investigation of crosslinking effects on density and solute transport, 

ion mobility (Na+ and Cl–), estimation of water diffusion coefficients and water structure 

and interactions within the polyamide.  The polyamide structure modeled was designed 

based on data for density, equilibrium water content and number of crosslinks obtained 

from the industry, but not available elsewhere (Kotelyanskii et al., 1998).  These 

properties are essential to the outcome of the simulations, and it is therefore critical to 

generate more accurate and reliable experimental data to support the models. 

 

Simulation results show, as expected, that a higher concentration of crosslinks increased 

the density of the polyamide and reduced the mobility of water molecules.  The authors 

found that water diffusion in the hydrated polyamide occurred by “jumps” between 

localized sites (Kotelyanskii et al., 1998).  These sites may be described as void spaces 

arising from the dynamic structure of the polymer chains.  Water molecules oscillate in 

these sites until thermal fluctuations or local structure rearrangements of the polymer 

permit another “jump”.  The estimated “jump” length was approximately 3Å, which was 

independent of the simulation conditions.  The frequency of these “jump” events, on the 

other hand, decreased with higher polymer densities.  In other words, the mobility of 

water molecules was reduced due to the decrease in the dynamics of the polymer chain 

caused by more crosslinks (i.e., higher density; Kotelyanskii et al., 1999).  The authors 

concluded that about 90% of the water molecules within the polymer matrix are 

interconnected by hydrogen bonds, forming a large network.  Water mobility (i.e., 

“jump” frequency) decreased as the concentration of hydrogen bonds increased.  With 

respect to salt transport in the polyamide, it was found that salt ions were partially 

hydrated with some water interactions replaced by ion-polymer interactions.  The 

mobility of the salt molecule was significantly lower than that of water and was limited 

by the chloride ion, which is consistent with the observed permselectivity of PA 

membranes. 
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Although atomistic simulations may be powerful tools for the investigation of transport 

and rejection mechanisms within the PA film of RO membranes, modeling predictions 

must be verified by experimental data since simulation results may be strongly influenced 

by PA characteristics.  Experimental data will allow the construction of more consistent 

PA models and help validate conclusions extracted from simulations. 

 

1.2 Project Objective 
 
The primary goal of this project was to develop robust solute rejection QSAR models for 

a series of commercial RO membranes challenged with a structurally diverse suite of 

organic compounds of immediate interest to water utilities and regulatory agencies.  

Compounds of special interest included endocrine disruptors, antibiotic agents, 

neuroactive drugs, insecticides, and DBPs.   To accomplish this goal, a radiometric 

membrane performance (RMP) assay was developed which permited rapid determination 

of the interactions of radiolabeled organic substances (rejection, association) with RO 

membrane materials.  QSAR models enabling prediction of compound rejection for each 

membrane type evaluated were developed using the RMP assay dataset and calculated 

compound molecular properties (descriptors). 

  

Specific project objectives included (1) validation and calibration of the RMP assay 

(described in further detail below), (2) use of the RMP assay to quantify the rejection 

behaviors of a wide range of endocrine disruptors, antibiotics, and DBPs by commercial 

low-pressure TFC membranes, and (3) development of QSAR models (one model for 

each membrane type investigated) based on the mass transport/rejection data for the 

compounds examined.  Compound transport data derived from RMP experiments were 

also compared with the results of molecular dynamics (MD) simulations. 

 

A second objective of this study was to evaluate the usefulness and accuracy of MD 

simulations for determining RO membrane fluxes and rejections of trace organic 

compounds of public health concern.  Examples of compounds of particular interest 

include disinfection by-products such as N-nitrosodimethylamine (NDMA) and 1,1,2,2-

tetrachloroethylene (PCE), as well as the endocrine disruptor 17a estradiol.  The initial 
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focus was on polyamide RO membranes since they are widely used in water treatment 

and organic compound rejections are generally superior for this class of membranes.  If 

successful, MD simulations could provide an approach that may be generalized for 

predicting the organic rejection properties of any membrane material that can be 

modeled. 
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2 TECHNICAL DESCRIPTION 

 
2.1 Creation of Empirical (QSAR) Models Describing Organic Compound 

Rejection 
 
The experimental approach involved application of the RMP assay to build a database of 

membrane interactions between the test membranes and organic compounds which have 

special relevance for water utilities and regulatory agencies, and then to relate the 

membrane interactions with molecular properties (defined by QSAR molecular 

descriptors). 

2.1.1 Organic Compound Master List 

 
A master list of 190 compounds was compiled based on a search of the following 

governmental databases:  U.S. Geological Survey Toxic Substances Hydrology Program, 

U.S. Environmental Protection Agency Unregulated Contaminant Monitoring Rule and 

Drinking Water Contaminant Candidate List, April, 1999 and the California Department 

of Health Services Unregulated Chemicals Requiring Monitoring, May, 2001.   The 

compound list included many endocrine disruptors, antibiotics, neuroactive drugs, 

insecticides, and DBPs.  Additional compounds (amino acids, marine toxins) were added 

to increase the breadth of molecular properties variations.  The final master list of  202 

compounds with brief descriptions of their regulatory or environmental relevance is 

shown in Tables 1a-1e. 

2.1.2 Selection of QSAR Molecular Descriptors 

 
Compounds were constructed using molecular modeling computer software and initially 

more than 370 molecular descriptors were calculated for each of the compounds in the 

master list using QSARis software ( SciVision, Inc., Lexington, MA).  The descriptors 

were organized into eight general categories, each of which contained numerous sub-

categories, as indicated below: 

• Molecular Connectivity Chi indices (3 descriptors total) 

• Kappa Shape indices (2 descriptors total) 

• Electrotopological State (E-State) indices (6 descriptors total) 
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• Information indices (7 descriptors total) 

• Subgraph Count indices (22 descriptors total) 

• Total Topological descriptors (11 descriptors total) 

• Molecular Properties (17 descriptors total) 

• Other descriptors (4 descriptors total) 

 

Due to software limitations that restricted the total number of independent-variable 

(descriptor) inputs that could be used for the development of QSAR models, a strategy 

was devised to reduce the total number of descriptors to be used in model development.   

This approach involved performing a series of cluster analyses (nearest neighbor, squared 

Euclidian method) on each major descriptor category using a statistical analysis package 

(Statgraphics, Manugistics, Rockville, MD) to reveal any highly cross-correlated 

descriptors in that particular group.  For example, the seven descriptors in the information 

indices category were observed to form four independent clusters (i.e., non-correlated 

subgroups).  One or more information index from each of the four subgroups was 

subsequently selected for candidate membership in the final (master) descriptor list.  

Selection of descriptors from within cluster subgroups was based on the perceived 

relevance of the descriptor based on its definition (e.g., simple descriptors were generally 

favored over more complex derivative descriptors) and done in a conservative manner, 

i.e., often more than one member of a subgroup was chosen for inclusion in the master 

descriptor list.  Following this protocol for each of the eight major descriptor categories 

resulted in a master list of 73 molecular descriptors for each organic compound used in 

the study (Table 2).   

 

2.1.3 Clustering Compounds by Similar QSAR Descriptor Properties 

 
Cluster analyses were similarly employed to break the list of compounds of interest into 

subgroups of compounds having similar descriptor values.  Such statistically-based 

grouping was necessary because most of the compounds were known to be unavailable in 

a radiolabeled form.  Therefore, the simplifying assumption was made that compounds 

having similar descriptor-set values would exhibit similar rejection behaviors across the 
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different RO membranes used in the study, and vice versa.  A single cluster analysis was 

performed using Statgraphics (Ward’s squared Euclidian method).  In this case, 

truncation of the master descriptor list was necessary in this step since Statgraphics 

would accept a maximum of 64 independent variables as inputs for clustering analyses.  

In this case, a Pearson’s R correlation matrix was used to eliminate the most highly cross-

correlated descriptors.  A subsequent dendritic analysis of the remaining descriptors 

resulted in creation of 20 subgroups (QSAR molecular property clusters) (Fig. 7).  A 

complete listing of all master database compounds with their properties,  QSAR 

descriptor values and QSAR descriptor clusters is presented in Appendix 3.   

 

2.1.4 Selection of Surrogate Compounds for Analysis 

 
From the contents of each of these 20 clusters, one or more compounds were identified as 

surrogates to represent the molecular behavior of the members of the cluster for 

determination of actual compound interactions with the five different RO membranes.  A 

total of 51 compounds were obtained as surrogates for this study (Table 4).  Not all 

clusters were represented, but in many cases more than one member of a cluster was 

included in the surrogate list.  Compounds used in the study were obtained from 

American Radiolabeled Chemicals, Inc., St. Louis, MO; Amersham, Piscataway, NJ; 

ICN, Irvine, CA; Perkin Elmer Life Sciences, Inc., Boston, MA; Moravek Biochemicals, 

Inc., Brea, CA and Sigma, St. Louis, MO.  Purity of the compounds was >99% and all 

compounds were stored either at 4 C or –20 C (depending on the compound) for a 

minimal period of time (typically less than one week) prior to assay to lessen the 

opportunity for post-manufacture chemical changes. Compounds labeled with 14C were 

chosen preferentially over compounds labeled with 3H to reduce the possibility of 

radiolysis during storage and to avoid the possibility of the 3H proton exchanging with 

water during interaction with the membrane (Riley et. al., 1988).  Only four compounds 

labeled with 3H were used in the study.  Complete surrogate compound information is 

presented in Appendix 2. 
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2.1.5 Membranes Used In Study  

Four commercial polyamide (PA) RO membranes and one cellulose acetate (CA) RO 

membrane were selected for this project (Table 5).  Due to the high solute rejection and 

throughput, PA membranes have become the commercial membranes of choice utilized 

in the water and wastewater treatment industry today.  However, CA membranes are still 

extensively used in the industry and one was included for comparative purposes.  

2.1.6 Membrane Preparation and Coupon Fabrication 

 

Swatches (4” x 6’) were randomly obtained from sheets of each of the membranes (to 

avoid the potential for regional variations in the membrane material) and preconditioned 

under crossflow conditions in a stainless steel cell designed at OCWD (Fig. 4) at a 

pressure of 150 PSIG for 16 hrs using 1 µohm-cm deionized water.  This process was 

necessary to hydrate the membrane material and to extract unreacted monomers (e.g., 

trimesoyl chloride and m-phenylenediamine) or other chemical substances (e.g., certain 

surfactants and possibly biocides) that could remain associated with the membranes 

following their manufacture. 

 

Following preconditioning, circular 12.5-mm diameter coupons of membrane were cut 

from the swatches using a circular punch.  As with the swatches, coupons were randomly 

harvested from the swatch surface to help eliminate effects of short order 

inhomogenieties in the membrane material.  The coupons thus obtained were stored in 17 

Mohm-cm ASTM I ultrapure water at 4 C for no more than one week before use. 

2.1.7 Determination of Membrane-Compound Interactions 

2.1.7.1 Radiometric Membrane Performance (RMP) Assay 

 
The Radiometric Membrane Performance (RMP) assay (Figs. 2 and 3) was performed 

using a small stainless-steel/Teflon pressure cell (VWR, Bristol, CN), which supported 

the membrane coupon on a perforated stainless steel disk with the feed surface gasketed 
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with a Teflon O-ring.  The pressure cell was screwed together to a constant torque of 15 

inch-lb with a torque wrench.  Care was taken to apply sufficient torque to avoid leaks, 

but not so much as to crush or damage the permselective membrane surface. 

 

The feed side of the pressure cell was filled with a feed solution consisting of 17 Mohm-

cm ASTM I ultrapure water containing typically 100,000 – 1,000,000 disintegrations per 

minute (DPM) of radiolabeled (14C or 3H) test compound (typically approximately 9 µM 

concentration of feed compound) adjusted to pH 7 as needed (using extremely small 

amounts of  HCl or NaOH).   At this concentration, the effects of concentration 

polarization was expected to be relatively low in spite of a lack of cross-flow. 

 

A 10 µL sample of the feed solution was recovered and placed in 10 mL of scintillation 

cocktail (Optifluor, Packard Instrument Company, Meriden, CT) prior to filling a 5 mL 

glass and Teflon gas-tight syringe (Hamilton Company, Reno, NV) with 2 mL of feed 

solution. The pressure cell was connected to the syringe such that all air bubbles were 

excluded.  The pressure cell and syringe were then placed in a polyvinyl chloride (PVC) 

housing equipped with a 50 mL glass and Teflon Hamilton syringe designed such that the 

plungers of both, it and the feed syringe, were brought into contact.  When regulated 15 

PSI compressed air was supplied to the larger syringe, the 10:1 area ratio of the pistons 

generated 150 PSI of hydraulic pressure at 24 C in the smaller feed solution syringe. 

 

Product expressed through the membrane coupon under pressure was collected through a 

18 gauge (GA) hypodermic needle attached to the pressure cell product side.  As soon as 

product was observed at the needle tip, the tip was submerged below the surface of 10 

mL of scintillation cocktail in a 22 mm scintillation vial and a stopwatch was started to 

record the time required for collection of the product sample.  Collection of the product in 

this manner avoided significant loss of the more volatile surrogate compounds during 

product collection. 

 

A product volume of approximately 0.5 mL was collected; the volume was 

gravimetrically determined using a 2-place digital balance (Sartorius Model PT-120, 
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Sartorius Corp., Bohemia, NY; error ±-0.005 g).  The time required for collection of the 

product was noted during each assay and varied from 10 to 40 min depending on the 

membrane in use. 

 

After product collection, the pressure cell was recovered and detached from the pressure 

apparatus.  A second 10 µL feed sample was obtained from the chamber reservoir and 

placed in 10 mL of scintillation cocktail as was previously described.  This second 

sample was used to determine whether or not significant loss of feed concentration 

occurred (by adsorption to the apparatus, e.g.) during the course of the experiment.  No 

significant differences were observed between the initial and final feed samples during 

the study. 

 

Following sampling, the residual feed and product solutions remaining in the pressure 

cell were removed using a thin pipette tip (Ranin Instrument Corporation, Woburn, MA).  

The pressure cell was carefully unscrewed and the membrane coupon recovered using 

clean forceps.  The coupon was rinsed by sequentially dipping and swishing six times in 

three 400-mL beakers containing 350 mL of 17 Mohm ASTM I grade ultrapure water.  

The coupon was then blotted by gently touching the front and back surfaces to adsorbent 

paper to wick away any adhering water and placed into 10 mL of scintillation cocktail in 

a 22 mL scintillation vial.  Membrane coupons in scintillation cocktail were incubated 

overnight (roughly 12 hr) in order to facilitate permeation of the cocktail into the 

membrane material.  Tests performed in the laboratory indicated that this procedure 

yielded the most complete recovery of membrane-associated compound. 

 

Scintillation vials containing feed samples, product samples and membrane coupons were 

placed in a scintillation counter (Wallac LKB 1219 Rackbeta Liquid Scintillation 

Counter, Perkin-Elmer, Shelton, CT) and counted for 1min.  Quench and counting 

efficiency were corrected using the external sample channel ratio method with 226Ra as 

the external standard to yield a measurement of DPM.  Background correction was 

applied by subtracting DPM obtained by counting 10 mL of scintillation cocktail with no 

sample. 
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A minimum of 5 replicate measurements were performed with each combination of 

membrane and solute compound in order to define noise due to variations in the 

membrane coupons, counting error, assay errors (pippetting errors), etc. The numbers of 

replicates were occasionally greater for certain compounds or membrane materials.   

 

Statistical outliers were defined as having values >3 interquartile ranges below the first or 

above the third quartile, and may have been caused by defective membrane coupons or 

leaky seals in the RMP assay apparatus.  Outliers were detected in sets of 5 or more 

replicates using Statgraphics and eliminated from the data set if discovered.  In cases 

where outliers were eliminated, additional replicates were acquired to replace them such 

that the total number of replicates remained consistent.    

 

All pressure cell components, needles and glass syringes were thoroughly 

decontaminated by placing in a stainless steel tray and spraying with a 

radiodecontamination solution (Radiacwash #005-400, Biodex Medical Systems, Inc., 

Shirley, MA) followed by laboratory detergent to remove organic contaminants (Micro-

90, International Products Corporation, Burlington, NJ).  After spraying, deionized water 

(1 µohm-cm deionized water) was added to cover the treated parts and they were soaked 

for a minimum of one hr.  Parts were then scrubbed thoroughly with a nylon bristle brush 

and rinsed with deionized water followed by 70% laboratory grade denatured ethanol 

(squirt bottles were used to insure chamber and needle lumens were thoroughly cleaned).  

Following a final thorough rinsing with deionized water, components were air-dried on 

the bench.  Experiments performed in the laboratory demonstrated that this procedure 

reduced background activity (contamination) by the apparatus to below 50 DPM in the 

product. 

 

As 100,000 to 1,000,000 DPM were typically used in experiments, the RMP assay 

dynamic range of measurable attenuation was typically on the order of 3 to 4 logs 

removal (99.9% to 99.99% rejection).  
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2.1.7.2 Membrane-Compound Interactions: Relative Solute Fluxes 

 
There are three basic mechanisms by which the incoming flux of solute in the feed may 

interact with a membrane.  The solute can be rejected at the membrane surface, showing 

no interaction with the membrane and remaining feed.  For purposes of this study we 

term this flux of mass the “R-Flux”, where “R” indicates rejection at the membrane 

surface (the membrane acts as a mechanical barrier).  The solute can be adsorbed onto or 

absorbed into the membrane, which we define in this study as the “M-Flux”, where “M” 

indicates “membrane”.  Finally, the solute mass can pass through the membrane and into 

the product, an interaction we term the “P-Flux”, where “P” means “product”).  These 

fluxes may be normalized by considering the flux of solute impinging on the membrane 

(“F-Flux”) as 100 (%); thus the other values represent a mass distribution amongst the 

three membrane interactions (Fig. 1).  

2.1.7.3 Determining Relative P-, M- and R-Fluxes from the RMP Assay 

Results 

 
Using the RMP assay, the solute mass entering the product and the membrane were 

directly determined by measuring the amount of radioactivity accumulated in the total 

recovered product volume and in the membrane coupon.  From the concentration of 

radioactivity in the feed solution and knowledge of the total feed volume recovered, 

relative values for the P-Flux and M-Flux may be obtained using the following 

expressions: 

 

Relative P-Flux  =  [Total DPMProduct/((DMPFeed/ml)(VolumeProduct))] x 100 

 

Relative M-Flux  =  [DPMMembrane/((DMPFeed/ml)(VolumeProduct))] x 100 

 

The relative F-Flux = 100 by definition; therefore the relative R-Flux could be calculated 

from the following expression: 

 

Relative R-Flux = F-Flux – (P-Flux + M-Flux) 

 



 18 

These expressions represent the distribution of solute mass during membrane interactions 

such that the sum of the relative P-, M- and R-Fluxes should equal 100 (which affords a 

simple means to evaluate the results of predictions of the models created independently 

from these data as described below).  Actual fluxes of compounds (in terms of mass per 

unit area per unit time) may be calculated from the relative fluxes by treating them as a 

proportion of the actual feed flux.  Actual specific feed flux may be obtained by 

calculating the mass of solute per unit area per unit time impinging on the membrane 

based on a knowledge of the recovered product volume, the area of the membrane 

coupon, and the concentration of solute in the feed.  At 9 µM solute concentration, an 

average water flux of 28.11 GFD for PA membranes and a coupon area of 6.58x10-5 m2, 

the average specific feed flux observed in RMP assay experiments typically was on the 

order of 0.54 µM of compound • m-2 membrane • min-1 per µM solute in the feed. 

2.1.8 Comparison of RMP Assay Results to Crossflow Membrane Test Unit 

 
The RMP assay lacked the crossflow component present in RO systems, which is 

required for prevention of significant formation of a polarization layer on the membrane.  

Formation of this layer seriously degrades RO performance by increasing osmotic 

backpressure and by increasing compound concentration at the membrane surface, which 

increases overall mass flux of compound through to the product side.  The concentration 

of substances capable of influencing the osmotic pressure of an aqueous solution was far 

lower in the experimental feedstock that would be typically present in an operational RO 

system; nonetheless, it was desired to compare the behavior of the RMP assay with that 

of a standard crossflow RO unit to determine the similarity in performance, and to 

confirm that behavior of the assay was at least reasonably consistent with what could be 

expected of membrane performance under nominal operating conditions. 

 

Four test compounds, urea, N-nitrosodimethylamine, caffeine, and sulfate, were chosen 

for this comparison based on their disparate rejection behavior and their relative ease of 

analysis by traditional methods.  The test compounds were obtained in both radiolabeled 

(14C for the organic compounds and 35S for sulfate) and cold forms. 
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For the RMP assay, the test compounds were present in the feedstock at approximately 9 

µM for NDMA and caffeine, 20 µM for urea and 10-5 µM for sulfate.  Relative P-Fluxes 

for each of these compounds were determined for each of the test membranes (n = 5) 

using the RMP assay methods described above, and from this value a percent rejection 

was calculated for these test compounds from: 

 

% Rejection = 100 – P-Flux. 

 

Rejection for each of the test compounds by each of the test membranes (n = 2 to 3) was 

also determined using a 4” x 6” rectangular crossflow block tester unit (Fig. 4).  For this 

assay, the membranes were conditioned with 1 µohm-cm deionized water as previously 

described.  Following conditioning, a feedstock was introduced containing either 9 µM 

caffeine, 2,800 µM sulfate, 10,000 µM urea or 0.0054 µM NDMA.  The block tester was 

operated with a crossflow velocity of 0.3 m/sec at 150 PSI (approximating nominal RO 

operating conditions).  Operating temperature was 22 – 27 C, (rejection was corrected to 

25 C), and membranes were operated for 5 to 7 hrs before the product stream and 

feedstock were sampled.  Concentration of solute in the feed and product was 

immediately analyzed by the following protocols: 

 

Sulfate:  Concentration in the feed and product was estimated by conductivity 

using a field conductivity meter (Model 115A + Orion Research Inc. Beverly, 

MA).  Two meters were used; one to measure the higher feed conductivity and the 

other to measure the lower product conductivity to enhance accuracy.  Meter was 

temperature-compensated. 

 

Urea:  Concentration was analyzed spectrophotometrically (OD200) (Spectral 

Instruments, Inc., Tuscon, AZ).  Concentration of urea was determined by 

correlation with a standard curve generated using duplicate standards prepared in 

17 Mohm ASTM I ultrapure water.  
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NDMA:  Concentration was determined by gas chromatography (3800 Varian gas 

chromatograph with DB-VRX column, Varian Corp., Walnut Creek, CA). 

 

Caffeine:  Concentration was determined using EPA Method 507 (Varian 3500 

gas chromatograph with dual columns and an NPD detector, Varian Corp., 

Walnut Creek, CA). 

 

 Rejection was determined using the following expression: 

 

(([Solute feed] – [Solute Product])/[Solute feed]) x 100 

 

The performance of the crossflow block tester and  RMP assay were compared using a 

standard linear regression model for each of the RO membranes used in the study  

(Fig. 5). 

 

2.1.9 Construction of Artificial Neural Network Models Describing 

Association of Organic Compounds with RO Membranes 

 
Figure 6 presents a schematic illustrating the methods used to select molecular descriptor 

input parameters using a genetic algorithm (GA) and to construct artificial neural network 

(ANN) models of compound/membrane interactions. 
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2.1.9.1 Selection of QSAR Descriptors Best Correlating with Organic 

Compound Membrane Association 

The three compound-membrane interactions (the relative P-Flux, M-Flux and R-Flux) 

described above were modeled in this study for each of the five study membranes.  In 

addition, data were pooled for the PA membranes and used to construct “'Universal” PA 

models for P- M- and R-Flux (a total of 18 models in all). 

The initial set of 73 QSAR molecular descriptors originally identified (Table 2) was 

chosen without regard for their relationship to specific organic compound/membrane 

interactions.  Thus, for each membrane and for each interaction, an initial selection 

process was required to identify the subset of molecular descriptors best correlated with 

each compound-membrane interaction prior to model construction. 

2.1.9.1.1 Choice of Exemplars and Randomization of Order. 

All numerical operations were carried out using Microsoft Excel (Microsoft Corp., 

Redmond, WA).  For all the individual membrane models, data spreadsheets were created 

containing a line of data for each individual exemplar.  Exemplars were constructed for 

each surrogate compound by combining the originally identified 73 molecular descriptors 

(independent input parameters) with the measured relative compound flux (either P, M, 

or R; dependent output parameter).  The original laboratory replicates were used in this 

process rather than averages of the data.  Each of the 51 surrogate compounds was 

typically represented by 5 or more laboratory replicates, raising the total number of 

exemplars used in the individual models to 255 or more.  This was done because there 

was a relatively small number of surrogates for multivariate analysis, and this approach 

increased the number of available exemplars for modeling as well as captured the full 

range of statistical variation present in the laboratory measurements which otherwise 

would have been lost in the averaging process. 

For the “Universal” PA membrane models, in addition to the molecular descriptors, 

numerical measurements related to specific PA membrane properties (Table 3) were also 

included in the input parameter set, the a priori assumption being that one or more of 
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these membrane properties could prove as influential on compound-membrane 

interactions as the QSAR molecular descriptors. 

In all cases, the order of the exemplars was randomized prior to any input winnowing or 

modeling efforts.  This was achieved by first creating random numbers using the Excel 

randomization function and assigning these numbers to each of line of exemplar data, 

then sorting the exemplars using these random numbers.  This resulted in a complete 

randomization of the order of the exemplars in the data spreadsheet.  Randomization of 

the order of the exemplars was performed before each input selection or modeling effort 

as an additional precaution to insure that the order in which data were presented did not 

influence the final results.  

2.1.9.1.2 Identification of Subsets of Influential Descriptors Using a Genetic 

Algorithm (GA) 

Reduction of input data by determination of inputs salient to the process being modeled is 

the first step in any modeling process.  There are a number of possible methods by which 

this may be achieved, but with the advent of more powerful desktop computer systems, 

genetic algorithms (GA) are now commonly being used to find a set of parameters that 

optimize a complex multiparameter function (Mitchell, 1998), especially when there is a 

large number of potential input parameters and a restricted number of exemplars to 

analyze.  Evolutionary computation theory is too complex to thoroughly explain in this 

report; however, in a simple sense genetic algorithms operate by using the rules of 

genetic recombination and evolution to select the “fittest” set of input parameters to 

describe the behavior of a chosen output parameter.  They all have in common 

populations of “chromosomes”, “crossover” to produce new "offspring", and "random 

mutation" (Mitchell, 1998).  In this case, “chromosomes” refer to a set of input 

parameters (initially randomly chosen), “crossover” is the process of randomly 

exchanging inputs between “chromosomes”, and “mutation” refers to the occasional 

random inclusion of lost inputs back into the population.  The algorithm operates by 

sequentially performing “crossover” functions and “mutation” functions to produce a new 

combination of input variables, and then tests this new combination to determine whether 
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or not it better describes observed variations in the output parameter (using some testing 

protocol such as linear regression) than the original combinations.  If so, net new 

combination becomes the “parent” for a subsequent “generation”.  Thus, by iterative 

processing using evolutionary theory, the algorithm converges upon a “fittest” subset of 

input parameters. 

Selection of input parameters for this study was achieved using a GA provided as part of 

the NeuralWorks Predict package (NeuralWorks Predict, Neuralware, Carnegie, PA).  

This program utilized a logistic multiple linear regression fitness evaluation.  In addition 

to the normal GA selection criteria, an additional “Cascaded Variable Selection” was 

employed to rapidly eliminate inputs with a low probability of inclusion in the optimum 

input set (a function especially useful with large input arrays).  Inclusion of inputs by the 

GA was detected by construction of a single neural network and performing a sensitivity 

analysis to detect influential inputs (methods described below).  The GA eliminated 

descriptors that did not predict compound-membrane interactions, and typically reduced 

the initial 73 molecular descriptor set down to subsets of from 7 to 21 descriptors each. 

2.1.9.1.3 Identification of Most Common Influential Descriptors. 

The GA converges on an optimum fit between the input parameters and the output 

parameter, but it does not necessarily predict a globally optimum input set.  More than 

one combination of inputs may lead to an acceptable solution, especially if the inputs are 

partially intercorrelated, as are many of the molecular descriptors (even though efforts 

were taken to reduce intercorrelation, some still persisted).  Therefore, some randomness 

exists in the selection of inputs by the GA.  However, it was expected that statistically the 

GA should choose the most highly influential inputs most frequently.  Thus, a histogram 

constructed from multiple, independent GA selections should reveal the most influential 

input parameters for subsequent modeling.  This histogram was constructed for each 

model by operating the GA on each data set for 10 iterations.  For each iteration, the 

order of exemplars in the data spreadsheet was re-randomized, ensuring that the GA 

started with a completely different and randomized seed population each time.  Inputs 

selected by the GA were detected as described above and recorded to produce a 
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histogram.  “Influential” inputs were retained using a simple filter based on inclusion of 

the input in ≥ 50% of the input sets by the GA.  This method typically resulted in 

selection of from 4 to 10 of the inputs per spreadsheet for inclusion in the artificial neural 

network (ANN) models. 

2.1.9.2 Construction of Artificial Neural Network (ANN) Models 

 

Multivariate analysis methods based on standard statistical approaches are capable of 

predicting the behavior of reasonably complex systems provided the systems are well-

behaved and that the input functions describing the system are statistically independent of 

each other.  In the case of organic compound interactions with RO membranes, the 

literature suggests that there may be reasonably smooth relationships within the scope of 

the interactions that could model well by traditional techniques.  However, the molecular 

descriptors are by nature not entirely independent of one another.  For example, it is 

difficult to design a molecule in which the molecular weight increases very much without 

a concomitant increase in molecular complexity.  Thus, existence of intercorrelations 

between molecular descriptor inputs makes modeling compound-membrane interactions 

more difficult.  However, neural network computing is less susceptible to these issues 

than are more traditional modeling methods.  Moreover, neural computing methods are 

capable of describing the behavior of highly complex, nonlinear systems in which the 

exclusive rules of the interaction are either unknown or difficult to quantify.  Although, 

as with GAs, the details regarding how ANNs are designed and constructed is outside the 

scope of this report (Bharath and Drosen, 1994, provides a good review), ANNs may be 

simply described as virtual models of biological brains. 

An ANN is composed of a network of virtual neurons (“perceptrons”).  Information 

enters each perceptron via “synapses”; each feeding a simple function with a weighting 

factor that can emphasize or de-emphasize the overall influence of the function.  The 

effects of all the input functions are summed in the perceptron, then fed to an output 

function (often sigmoidal) by which the perceptron passes information to units further 

down in the network.  The neural net is constructed by interconnecting layers of these 

perceptrons.  Although highly complex multlayered networks are possible, the design 
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adopted for this study was a three-layered network consisting of an input layer, a 

“hidden” processing layer and an output layer (a single output perceptron in this case).  

The relationship between inputs and the outputs of a complex system are embossed upon 

the network by “training” it using concrete exemplars from the real world.  During the 

training process, perceptrons are added and the values of the weighting factors are 

adjusted until the behavior of the network converges on the behavior of the real system as 

determined by one or more correlative comparisons.  At this point, the network has 

"learned" to recognize patterns in the input data that predict the output data.  As with any 

empirical mathematical modeling method, challenging the network with a “test” set of 

exemplars evaluates the predictive ability of the network.  Test data typically consist of 

10% to 20% of the exemplars that were not present during training.  A well-trained 

network will predict behavior of the test exemplars as well as it did the training 

exemplars. 

2.1.9.2.1 Randomization of Exemplars Prior to Model Construction 

As before, the order of exemplars was randomized prior to GA selection and ANN model 

construction.  This ensured that any ordering of the exemplars would not influence 

selection of inputs by the GA or training of the ANN. 

2.1.9.2.2 Construction of ANN Models 

ANN models were constructed from the surviving input parameters using NeuralWorks 

Predict v2.41 (Neuralware, Carnegie, PA). 

2.1.9.2.2.1 Assigning a Data Noise Level 

Although the input data were theoretically “clean”, the output data were considered to be 

“moderately noisy”.  The software settings were was adjusted accordingly to help prevent 

model over fitting (modeling variations caused by noise). 
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2.1.9.2.2.2  Assignment of I/O Transformation Functions 

Input data entering and leaving the network had to be transformed from real world values 

to the relative input values required by the ANN.  This was accomplished by use of one 

or more transformation functions.  Whereas during selection of salient inputs the choice 

of transforms was limited to one, in this case up to three transforms could be assigned per 

input (thus, there could be up to three input perceptrons per descriptor in the ANN).  

Transformation functions could either be linear (scaling only), or nonlinear (log, ln, 

exponential, power, inverse, inverse power or hyperbolic tangent) expressions.  The 

software automatically optimized the choice of functions by regression analysis. 

2.1.9.2.2.3 Selection of Model Inputs Using the GA 

The method used was more extensive than that for identification of salient input 

parameters described above in an attempt to further reduce the number of input 

parameters per ANN model.  Once again a multiple logistic linear regression routine was 

employed with the cascade variable selection activated. 

2.1.9.2.2.4 Selecting Training and Test Exemplar Pools 

Input data were divided into two sets using a round robin selection criterion that 

eliminated every fifth exemplar from the training pool and used these eliminated 

exemplars to create a testing pool.  As the data were previously randomized, this process 

yielded a random selection of 20% of the exemplars for testing.  This process did not 

specifically remove entire surrogate compounds from the training pool.  The number of 

surrogates was so small and the variation in chemical structures so great that elimination 

of any compound from the exemplar database would have seriously affected the 

experience of the ANN.  Thus, the model was tested for its ability to predict around noise 

variations in the exemplar data, and an approach combining the behavior of all three 

models describing compound-membrane interactions (P-, M- and R-Flux models) was 

employed to evaluate the overall prediction performance of the ANN models (see below).  
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2.1.9.2.2.5 Training and Selecting the Best ANN Model   

Three networks were constructed using the training data.  Construction and training the 

networks proceeded using an adaptive gradient learning rule in which back-propagated 

gradient information was used to guide an iterative search algorithm.  Back-propagation 

involves determining the difference between the desired output (the actual laboratory 

result) and the network prediction, then adjusting the output layer (perceptron) weighting 

factors in proportion to the difference.  The calculations involved in this correction are 

then used as a basis for making correction to weights in the hidden layer and finally in the 

input layer (Bharath and Drosen, 1994). 

Performance of the networks was evaluated by comparison of the linear correlation (R) 

between the predicted outputs and the actual laboratory flux data, and the best of the three 

ANNs chosen.  Correlation values were found to be in excess of 0.95 in most cases for 

these models. 

2.1.9.2.2.6 Testing the Selected Network 

The test exemplar set previously described was used to determine the ability of the 

network to model behavior of the surrogates.  Comparison of the correlation coefficient 

was used as a measure of overall performance.  Close matches between training and test 

data sets were taken as an indication of a good model.  Typically, training and test R 

values were within 0.05 - 0.07 for these models.  Additional measures of good model 

behavior included tight predicted 95% confidence limits.  The number of molecular 

descriptors per model at this point was 4 to 10. 

2.1.9.2.3 Using Sensitivity Analysis to Eliminate Non-Influential ANN Inputs 

Due to the more stringent GA settings and the ability to employ more than one 

transformation function during ANN model construction, the possibility existed that not 

all of the descriptors provided to the model would be chosen for inclusion in the model.  

In order to eliminate inputs that had been rejected by the ANN, a sensitivity analysis was 
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performed on the entire data set.  This analysis generally indicates the degree and 

direction of influence that each input in the ANN model has on the model output.  If the 

sensitivity analysis is zero, the input likely has no significant effect on the model and may 

be eliminated without a significant change in model fitness. 

Inputs discovered with null sensitivity indices were eliminated from the input data set and 

a new ANN model was then constructed using the above methods.  This process was 

continued until all inputs demonstrated influence in the model.  It typically took 2 to 3 

iterations to achieve this.  This served to simplify each flux model by eliminating one or 

two inputs without significantly sacrificing model predictability.  The final ANN models 

contained from 4 to 10 input descriptors. 

2.1.9.3 Characterization and Validation of the ANN Models 

2.1.9.3.1 Determining Basic Model Attributes 

For each ANN model, the predicted output was graphically compared with the actual 

measured flux data, the correlation coefficients between predicted and actual flux data 

were determined, and the 95% confidence intervals were calculated (Figs 14a through 

19c; Tables 9a through 14c). 

2.1.9.3.2 Determining the Overall Influence of Model Inputs on Organic 

Compound Fluxes 

A final sensitivity analysis was performed to evaluate the relative influence of each of the 

molecular descriptors included in the model on compound P-, M- and R-Fluxes (Tables 

15a through 15c). 

2.1.9.3.3 Predicting Behavior of the Remaining Compounds in the Database 

The P-, M- and R-Fluxes of all 202 compounds in the organic compound database were 

predicted for each membrane and for the “Universal” PA model.   
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2.1.10 Validating the ANN Models 

2.1.10.1  "Virtual Mass Balance" Method 

The relative mass fluxes of organic compounds are related by: 

P-Flux + M-Flux + R-Flux = F-Flux 

where the F-Flux equals the initial flux of compound in the feed interacting with the 

membrane,  defined as 100%.  As all three flux models were derived independently from 

each other, the ability to predict the behavior of a compound interacting with a membrane 

by summing the fluxes predicted by all three models and determining their ability to close 

a “virtual mass balance” is a good test of all three models.  Using this technique and 

allowing for a 25% noise band, the number of compounds in the original database that 

could be successfully modeled was determined for each membrane and for the 

“Universal” PA membrane model (Tables 16a through 21c).  

2.1.10.2  Comparison of Model Results with Rejection Values Reported for 

Organic Compounds in the Literature 

Traditional percent rejection of compounds by RO membranes may be determined by 

either the P-Flux or R-Flux measurements.  The P-Flux yields the traditional rejection 

measurements based on penetration of compounds through the membrane.  Because the 

P-Flux has been determined as percent of the total feed flux, the percent rejection may be 

directly determined from: 

100 – (P-Flux) 

 

Comparisons were made between rejection estimated by this method and data obtained 

from a number of observations in the literature (Table 23). 
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2.1.11 Producing Excel-Enabled Exportable ANN Models Describing Organic 

Compound Interactions with RO Membranes 

Each of the ANN compound flux models were converted to Visual Basic (VB) source 

code using a Visual Basic compiler provided with NeuralWorks Predict.  For each of the 

test membranes and for the “Universal” PA model, the relevant P-, M- and R-Flux 

models were imported as macro functions into an Excel spreadsheet.  This spreadsheet 

was designed to include input cells allowing the user to manually enter relevant 

molecular descriptor data for any compound of interest, after which the embedded ANN 

VB programs calculate the predicted P-, M- and R-Fluxes, and percent rejection based on 

both P- and R-Fluxes.  Further user inputs regarding compound feed concentration and 

membrane water flux are provided so that the user may project absolute compound fluxes 

as well as concentration of compound expected in the RO product.  An F-Flux calculator 

and a residual comparator allows testing of the prediction results using the “virtual mass 

balance” method so that the user may determine whether or not the model predictions are 

acceptable for the particular test compound. 

These exportable models are capable of running under Windows on any PC computer 

running a macro enabled version of Excel (version for Office 2000 or later) and are 

available upon request. 
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2.2 Molecular Modeling Method Simulation of Compound-Membrane 

Interactions 

2.2.1 PA Modeling Methods and Simulation Conditions 

 

The steps carried out to achieve the above objective included (i) preparation and 

optimization of fully atomistic molecular models of PA membranes, (ii) preparation of 

specific compound molecular models, (iii) introduction of a selected compound into the 

hydrated PA membrane system, (iv) running the MD simulation, and (v) analysis of the 

results. 

2.2.2 Building the Membrane Models 

 

The membrane modeling (MM) software used to build the PA membrane models has 

evolved steadily over the past several years.  It is custom written in the Tool Command 

and Tool Kit (Tcl/Tk) language, a freeware, string-based, cross-platform dialect similar to 

Javascript.  Tcl/Tk has been ported to HyperChem, a commercial molecular modeling 

package containing more than 600 commands and state variables that can be addressed 

and logically controlled by Tcl.  A complete description of Tcl/Tk may be found at 

www.scriptics.com.  The version of software available before this project began had a 

number of limitations and bugs that needed to be overcome at the project inception. 

 

A screen capture of the variable setup page for the MM program is shown in Fig 29.  The 

software automatically constructs models of randomly crosslinked PA membranes using 

optimized models of meta-phenylenediamine (MPD) and trimesoyl chloride (TMC) as 

monomer building blocks.  This program involves several key steps which are outlined in 

Fig. 30, including: 

 

Step1.  Laying down non-bonded alternating MPD and TMC monomers at the 

vertices of a 3D cubic lattice. 

 



 32 

Step 2.  Bonding of the monomers into a nascent linear “backbone” chain by 

creating an amide bond at each step of a “random walk” through the 3D lattice.  

This method ensures a randomly folded chain is produced, which is in accordance 

with X-ray crystallographic data indicating a chaotic polymer arrangement in PA 

membranes. 

 

Step 3.  Initiation of random crosslinking between TMC residues in adjacent 

regions of the folded backbone structure.  This is carried out by forming amide 

bonds from the two TMC residues to a mutually-shared and neighboring MPD 

monomer.  Crosslinking effectively establishes membrane “pores”, as illustrated 

in Figs. 31 and 32.  The size, number, location, and dynamic behavior of such 

pores is a factor in controlling water and solute transport in the membrane.  

 

Step 4.  Elimination of remaining non-bonded MPD and TMC monomers 

followed by proportional scaling of partial atom charges to achieve the correct net 

membrane charge.  Charge is based on the number of free non-protonated 

carboxylate groups.  The membrane concentration of these groups can exceed  

1 M. 

 

Step 5.  Geometry optimization of the model followed by iteration of the program 

to build additional models.  At each iteration cycle, certain variables, such as the 

probability of crosslinking, can be incremented by some amount or randomly 

varied across a predetermined range.  In this way, a diverse population of 

membrane models can be prepared.  Models having the most suitable properties 

(e.g., globular shape, higher charge, etc.) can then be selected for a particular 

modeling task. 

 

The nascent membranes constitute a latticework of alternating TMC and MPD monomers 

connected by a random series of elongated amide bonds (Fig. 32).  The bonds rapidly 

shorten to realistic lengths and angles when the system is geometry optimized using a 

suitable classical force field, such as AMBER.  The “pores” remain distinctly visible, 
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however, as void spaces even in the final geometry-optimized structures.  The software 

monitors the number and location along the initial chain of crosslinks.  It should therefore 

be possible to calculate the number of pores in a membrane based on this information, but 

the relationship between crosslink number and location is not simple due to the 

occurrence of nested and overlapping crosslinks.  Efforts to resolve this relationship are 

underway. 

2.2.3 Modeling the Organic Solutes 

 

Software was developed to automatically call up and geometry-optimize any set of 

organic compounds using tandem classical and semi-empirical force fields.  This 

software was used to create the master compound list used for this study  (previously 

described).  Final molecular structure optimizations were carried out using the PM3 semi-

empirical force field.   

  

Based on the results of the RMP assay (previously described), two compounds were 

chosen as surrogates for this modeling subtask; NDMA, which is poorly rejected by PA 

membranes (~50%) and 1,1,2,2-tetrachloroethylene (PCE) which is well rejected 

(>99.9%).   The disinfection by-products NDMA and PCE are of particular interest 

because they both are uncharged, low-molecular-weight organics, yet one passes through 

the PA membrane well while the other is retarded.  The orbital structures and electrostatic 

configurations of NDMA and PCE are presented in Fig. 33. 

2.2.4 MD Simulation Setup & Run Conditions 

 

The basic conditions of the MD simulations are given in Table 25.  Four relatively short 

duration (~200 ps) simulations have been conducted, two each for NDMA and PCE in 

either a hydrated membrane system of in water.  The simulations are preliminary in 

nature because of the brief simulation times and the need to explore the effects of key 

variables in future simulations, e.g., membrane charge, density, crosslinking, pressure, 

etc. 
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The densities of the initial optimized model membranes are generally about 0.1 g/cm3, 

i.e., more than 10-fold less than the value of 1.3 g/cm3 for actual PA membranes that has 

been reported in the literature (Kotelyanskii et al., 1998).  The membranes do not 

spontaneously undergo contraction and densification on their own in MD simulations due 

to strong electrostatic charge repulsion between the non-protonated carboxylate groups.  

Because pKa values for organic acid carboxyl groups generally range from about 3-4, 

these groups were left non-protonated in the membrane models.  This assumption seems 

reasonable given that many water treatment membranes are operated at ~pH 6-7 and 

sometimes higher.  However, this point may be contested and therefore should be 

explored more carefully in future work. 

 

The membranes undergo spontaneous contraction (“densification”) if monovalent or 

divalent cations (e.g., Na+ or Ca++) are placed in the system (data not shown) resulting 

in shielding and neutralization of the carboxylate charges by the cations. However, this 

was not done in this study because the ion concentrations needed to achieve significant 

membrane contraction were unrealistically high (>1M).  Instead, densification was 

accomplished by “packing” the hydrated membrane into a cubic periodic cell of 

appropriate volume (30 Å per side), as illustrated in Fig. 34.  Packing occurs by 

shortening and bending bonds resulting in a strained molecular conformation with some 

bad contacts and increased potential energy.  However, much of the strain is relieved by 

geometry optimizations and by running 100 ps of MD prior to introduction of the organic 

solute.  It is unknown whether real PA membranes are as highly packed and strained as 

the models seem to indicate, but this possibility is plausible in view of the extremely 

rapid nature of the interfacial polycondensation reaction between MPD and TMC.  The 

insoluble polymer network could rapidly precipitate in a strained conformation before it 

had time to fully relax.   Reliable surface energy measurements of PA membranes might 

shed light on the conformational stability of this polymer and such data could be useful in 

model verification and refinement of model structural details. 

 

Membrane hydration was performed by random addition of 200 TIP3P water models to 

the membrane prior to packing, yielding a water concentration of about 19 wt%.  These 
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are flexible water molecules with partial charges of -0.834e on oxygen and +0.417e on 

hydrogens.  The “packed” hydrated membrane system (with a density of ~1.19 g/cm3) 

was relaxed for 100 ps of MD simulation (300oK) before adding either NDMA or PCE to 

the system’s center.  The resulting system for NDMA is shown in Fig. 35, but water 

molecules have been removed to facilitate visual localization of the organic molecule.  

Note that membrane void spaces resembling membrane “pores” can still be observed 

even at the higher system density. 
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3 PROJECT RESULTS 

 
3.1 QSAR ANN Modeling Results 

3.1.1 Comparison of RMP Assay with a Crossflow RO System 

 
Although the absolute value of rejection determined by the RMP assay and the block 

tester were not equal (Fig. 5), there was an overall agreement in the comparative behavior 

of the two systems (e.g., compounds rejecting well in the RMP assay were observed to 

reject well with the crossflow block tester and vice-versa.).  The lack of the crossflow in 

the RMP assay, and subsequent increase in membrane concentration of solute at the 

membrane surface likely explains the reason why the rejection results deviate from ideal 

values (the dotted line in the figure).  However, the difference between the RMP assay 

and the cross-flow block tester is greatest where rejection is poor, and the results tend to 

converge as rejection improves (with the exception of the CA membrane).  Thus, for the 

most part, predictions of high rejection by the RMP assay (at least for PA membranes) 

should tend to reflect high rejection values observed in a standard RO unit. 

 

3.1.2 Determination of Compound-Membrane Interactions   

 
In the RMP assay, use of radioactively tagged compounds allows the mass of compound 

in the product, the feed, and in the membrane to be directly measured, and fluxes of 

compound through the membrane (P-Flux) and into the membrane (M-Flux) to be 

directly determined.  By difference, it was possible to estimate the flux of compound that 

remained in the feed.  Thus, the fate of surrogate compounds could be accurately tracked 

and their behavior could be determined. 

 

Figures 8a, 9a, 10a, 11a, 12a and 13a represent performance diagrams that illustrate 

compound behaviors determined for each membrane.  In these representations, the X-axis 

shows the relative M-Flux (values 0 – 100) representing increasing membrane association 

from the left to the right of the graph.  The Y-axis shows the relative P-Flux (values 100 

– 0) decreasing membrane penetration (increasing rejection) from bottom to top of the 

graph.  Each of the numbers on the graphs represent the identity of a surrogate 
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compound.  A list of these compounds with their respective ID numbers and relative 

compound fluxes (P-, M- and R-Fluxes) are presented in Figs. 8b, 8c, 9b, 9c, 10b, 10c, 

11b, 11c, 12b, 12c, 13b and 13c.  The QSAR descriptor cluster numbers correspond to 

the compounds’ molecular properties categories. 

 

The graphs representing compound fate are divided into four quadrants.  Compounds in 

quadrant “A” interact poorly with the membrane; they neither associate with the 

membrane nor do they pass through it.   This can be confirmed by their relatively low P-

Flux and M-Flux values, but relatively high R-Flux values (high rejection at the 

membrane surface).  Compounds in quadrant “A” are well rejected by the membrane 

acting as a mechanical barrier.  Some examples of compounds in this category include 

the pharmaceuticals ibuprofen, ciprofloxacin, the endocrine disruptor bisphenol, and the 

herbicide alachlor.  These compounds are very well rejected by all the PA membranes. 

 

Compounds in quadrant “B” do not associate with the membrane well, but pass through it 

relatively easily.  These compounds are poorly rejected, as the membrane provides a poor 

barrier to them.  Urea and NDMA are the only two surrogate compounds that fell in this 

category in for the PA membranes, while the CA membrane had several others, including 

caffeine and t-butyl alcohol.  

 

Compounds in quadrant “C” pass through the membrane poorly; however, they strongly 

associate with the membrane so their apparently high rejection is largely due to 

membrane absorption or adsorption.  In this case the membrane acts as an affinity filter.  

Although these compounds are initially well rejected, if the membrane reaches saturation 

(may occur if compound is constantly in the feed), these compounds may eventually 

break through, especially if they are absorbed into the membrane and not adsorbed on the 

membrane surface.  Examples of compounds that fall in this category for all the PA 

membranes are the endocrine hormones 17a-estradiol and estrone, the aromatic 

hydrocarbons toluene, benzene and the aromatic alcohol phenol. 
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The CA membrane behaved somewhat differently than PA membranes.  In general, there 

were less surrogate compounds associated with quadrant “A” and there were more 

compounds that fell in quadrant “B”, indicating that the CA membrane was not as 

successful as the PA membranes in rejecting organic compounds.   

 

A direct performance comparison between membranes for P-, M- and R-Flux for each 

surrogate compound is presented in Tables 6, 7 and 8. 

 

3.1.3 ANN Models Describing Organic Compound-Membrane Interactions 

3.1.3.1 Overall Performance of ANN Membrane Models 

Results of ANN modeling for P-, M- and R-Fluxes for all membranes (and for the 

“Universal” PA model) are summarized in Figs. 14a through 19c and Tables 9a through 

14c.  In each of Figs. 14a through 19c, a scatter plot comparing actual surrogate 

compound behavior with that predicted by the ANN model visually indicates model 

performance.  The diagonal line in this plot indicates perfect agreement between the 

model and real world values.  Error bars represent one standard deviation about the mean 

for the actual behavior data (n = 4 to 7).   ANN model statistics are presented beneath the 

scatter plot, including the R correlation values (linear correlation between predicted and 

actual values), the average absolute error values (average absolute error between the 

predicted and actual values) the root mean squared (RMS) error values (root mean square 

error between the predicted and actual values), the 95% confidence interval for the model 

and the number of exemplar records used to create the model.  The identity of the QSAR 

molecular descriptors used in model construction is indicated below the statistics panel.  

For each input, a value representing a sensitivity index calculation relating the direction 

and degree of influence of each of the input parameters to the model is presented 

(explained in more detail below).  Tables 9a through 14c present the predicted and actual 

behavior results for P-, M- and R-Fluxes for each of the surrogate compounds for all the 

membrane models (in the case of the “Universal” PA membrane, the actual values 

reported are the averages of results for all the PA membranes combined). 
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Performance of the ANN models was evaluated by comparing the linear correlation (R) 

coefficients between the predicted model outputs and the actual laboratory flux data.  

Correlation values were typically in excess of 0.95 in most cases.  Moreover, the 

closeness of matching between training and test data sets indicated a predictive model.  

Reasonably close ranges for the predicted 95% confidence limits also indicated good 

model behavior.  The P- and M-Fluxes tended to model better than the R-Flux, primarily 

due to the fact that the R-Flux was a calculated value made up of data from the other 

fluxes, and therefore contained the sum of their statistical noise.  For a like reason, the 

“Universal” PA membrane model was also noisier than the individual PA membrane 

models (but still possesse a relatively high R value).  Because of an increase in internal 

noise, this model is more flexible than the individual PA models, and tended to be 

somewhat more applicable to compound behavior prediction (see below). 

3.1.3.1.1 ANN Model Sensitivity Analysis Results 

 

Because the models in this study were constructed using QSAR molecular descriptors 

(for a detailed listing see Appendix 1) linked to fundamental molecular properties, it was 

hoped that the nature of the individual inputs to the models and the degree to which they 

influenced the predicted behavior of the surrogate compounds would provide insights as 

to the molecular mechanisms defining compound-membrane interactions.  One goal of 

the study was, therefore, a search for “universal behaviors” in a broad sense between 

membrane models with regard to the basic molecular properties. 

 

By considering the inputs selected by the GA during model construction, it was possible 

to gain insight as to which input parameter proved influential in a given compound-

membrane interaction.  However, the direction and magnitude of that influence was not 

revealed.  In the case of multivariate linear models, it is possible to gain this insight by 

analysis of the magnitude and direction of the slopes of the individual linear equations 

from which the model was assembled.  In the case of the ANN models, this is not 

possible.  However, it is possible with the ANN models to compute a “sensitivity index” 

for each of the input parameters.  The sensitivity index is a measure of the overall 

magnitude and direction of influence that each of the model input parameters has on the 
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model output.  If this index is calculated over the entire range of the input data set (for all 

the surrogate compounds), then it tends to represent the overall strength and direction the 

input parameter has on the model output.  However, it may not entirely indicate a long-

range output response.  For example, the sensitivity index for a constantly increasing 

function would be positive and one for a constantly decreasing function would be 

negative, and the magnitude of the index would be a relative index of slope.  If, on the 

other hand, the function contained a number of hills and valleys (a sine wave parallel to 

the X-axis would be an extreme example of this), the sensitivity index could be large 

because of short-range influences, but would not well indicate the long-range 

relationships in the function.  

 

A summary of the sensitivity indices for all the membranes with regard to each of the 

compound-membrane interactions (P-, M- and R-Fluxes) is presented in Tables 15a 

through 15c.  Of the original 73 molecular descriptors used in the modeling, a total of 33 

survived as inputs used in the ANN models (See Appendix 2).  In these tables, the 

molecular descriptors were broadly grouped into five categories to aid comparison.  The 

five groupings include descriptors related to molecular charge or polarity (ABSQ, 

MaxQp, MaxNeg, P, Py, Pz, Q, SsCH3, SdssC, SaaCH, SdO, Gmax, Gmin, Hmin), 

descriptors related to molecular size or complexity (Ovality, Surface, xpc4, xv1, xvpc4, 

nxp5, nxch6, k1, k2, k3, Iy, fw, idcbar, sumdelI,  Wt), descriptors related to molecular 

hydrophobicity (Log P), descriptors related to hydrophobicity/charge (Qs, Qsv), and 

descriptors related to the extent of molecular hydrogen bonding (numHBa ).  (For a 

detailed explanation of these descriptors, see Appendix 1.) 
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3.1.3.1.1.1 Relative P-Flux Sensitivity Index Analysis:  Molecular Descriptors 

Associated with Penetration of Organic Compounds through the 

RO Membranes 

 
In the case of the relative P-Flux (solute passing through the membrane, Table 15a), it 

was observed that, depending on the membrane, this compound-membrane interaction 

was associated with all five molecular descriptor groups, although models contained 

varying numbers of inputs (a minimum of 4 inputs for LFC1 to a maximum of 8 inputs 

for ESPA-2 and for the CA model).  Thus, ability of compounds to pass through the 

membranes were related to molecular charge and charge distribution, molecular size and 

complexity, hydrophobicity and to the hydrogen bonding.  However, the magnitude and 

direction of influence for many of these properties varied from membrane to membrane. 

 

In general, for the polyamide membranes, influential molecular descriptors included 

MaxQp (the largest positive charge over the atoms in the compound), Py (the magnitude 

of charge separation along the compound’s inertial Y-axis), P (the magnitude of the 

compound’s dipole moment), SsCH3 (the sum of the E-state values for all the methyl 

groups in the compound), SdssC (the sum of the E-states for all the aromatic carbon 

atoms in the molecule), and Hmin (the smallest hydrogen atom E-state in the compound).  

The CA membrane model included the same descriptors as the PA models (P and SdssC).   

There was a general variation in the direction and magnitude of the influences of the 

inputs related to molecular charge and polarity.  However, in general, Py (component of 

the dipole moment along the inertial Y-axis) tended to show agreement across three of 

the four PA models.  An increase in this descriptor was related to an increase in P-Flux.  

The CA model did not contain unique charge/polarity related inputs (some were also 

shared by one more PA models). 

 

Molecular complexity descriptors included in the models were Ovality (the deviation of 

the compound’s shape from a perfect sphere), Surface (the molecular surface area), the 

chi indices xpc4 (5 atom chi index encoding patterns of adjacency), xv1 (2 atom chi 

index encoding degree of branching) and xvpc4 (5 atom chi index encoding patterns of 
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adjacency), nxp5 (the number of paths in the molecule with 5 edges), Iy (the principal 

moment of inertia along the compound’s Y-axis), and fw (the compound’s molecular 

weight).  The relationship between molecular complexity and P-Flux was also mixed.  It 

would be generally expected that as molecular size and complexity increased that P-Flux 

should decrease.  In many cases (9 of 13 involving molecular complexity parameters), 

this was observed.  The CA membrane model emphasized the chi indices more than did 

the PA models, but the chi index descriptor xvpc4, though not included in the CA model, 

occurred in 3 out of 4 PA models.  Sensitivity indices for the chi indices tended to be 

negative, suggesting that ability to transverse the RO membrane matrix was in general 

inversely proportional to molecular complexity. 

 

Qsv (the average molecular group polarity descriptor) was only included in the CA 

model, and was positively associated with P-Flux. 

 

Hydrophobicity was almost universally important in models predicting P-Flux, evident 

by the nearly universal inclusion of LogP in both PA and CA models (with the exception 

of the TFC-HR model).  This input universally exhibited a negative relationship with the 

P-Flux.  As LogP increases, compound hydrophobicity increases.  This means that as 

compound hydrophobicity increased, there was a fairly universal tendency for the 

compound to be retained by the membrane. 

 

There was also a generally positive relationship between numHBa (the number of 

hydrogen bond acceptors in the compound) and the P-Flux (in three of the four PA 

membranes).  This indicates that as the number of hydrogen bond acceptors on the 

molecule increase, there is a greater tendency for the molecule to pass through the 

membrane. 

 

The “Universal” PA model exhibited general overall agreement with the nature and 

direction of influence of the parameters included in the other models.  More interesting 

was the fact that, although the membrane properties (Table 3) were included in 

construction of the P-Flux model, none of them survived during the evolution of the 



 43 

inputs by the GA.  This suggests that compound molecular properties were more 

influential than the measured membrane properties with regard to penetration of 

compounds through the PA membranes. 

 

The CA membrane model included many of the same descriptors appearing in the PA 

models, although there were some unique inputs (Qsv, xv1, xpc4) which did not appear 

in any of the PA models. 

3.1.3.1.1.2 Relative M-Flux Sensitivity Index Analysis:  Molecular Descriptors 

Associated with the Adsorbtion/Absorption of Organic Compounds 

to the RO Membranes 

 
ANN models describing the interaction of the compounds with the membranes (M-Flux) 

once again included representative molecular descriptors from all the five basic 

descriptor groups, and as with the P-Flux models there were differences in the descriptors 

emphasized by each membrane model (Table 15b).  Some descriptors included in the P-

Flux models also appeared in the M-Flux models (specifically MaxQp, P, SdssC, nxch6, 

LogP and NumHBa).  Once again, there was a range in the number of descriptors 

included in each membrane model (from as few as 4 with BW-30 and CA to as many as 

10 with LFC-1). 

 

With regard to the charge/polarity-related descriptors, besides MaxQp, P and SdssC, the 

M-Flux models included Q (the magnitude of the principal quadripole moment), SaaCH 

(the average E-state value for all aromatic carbon-hydride groups in the compound), 

Gmax (the largest atom E-state in the compound) and Gmin (the smallest atom E-state in 

the compound).  Once again, there was variation in the direction and magnitude of 

influence amongst the various membrane models for these inputs, though all of the 

models did include an input indicating that molecular charge and/or polarity played an 

important role in the association of the compounds with the membranes.  Gmin (the 

smallest atom E-state in the molecule (the most electrophilic atom in the molecule) was 

universally included in this category, and its sensitivity index was universally positive 



 44 

and relatively strong.  This suggested that the association of compounds with the 

membranes might involve electrophilic interactions.  Likewise, P (the magnitude of 

charge separation along the whole molecule) was universally included in all models.  In 

the case of 3 of the 4 PA models (and in the case of the “Universal” PA model), the 

sensitivity indices for P were negative, indicating that as the magnitude of the charge 

separation decreased, the association of the compound with the membrane increased.  

This relationship reversed in the case of CA and TFC-HR, however, but remained a 

strong relationship. 

 

Of the indices related to molecular complexity, only fw (formula weight) appeared in the 

P-Flux models.  Additional complexity descriptors related to M-Flux included nxch6 (the 

number of 6-membered rings in the compound), k1 (kappa shape index related to the 

degree of cyclicity in the compound) and idcbar (the Bonchev-Trinajsti mean information 

content).  The contribution of molecular descriptors related to molecular complexity to 

the M-Flux varied.  In some cases, (BW-30, TFC-HR and CA), complexity did not seem 

to be important in the models at all, and in the case of LFC-1 and ESPA-2, the models 

exhibited strong but inconsistent directions of influence with regards to formula weight 

(mass) and indicators related to molecular structural complexity (idcbar and k1). 

 

The number of hydrogen bond acceptors (numHBa) was once again included in the M-

Flux models, at least in 3 of the 4 PA models as well as in the “Universal” PA model.  It 

is universally positive, indicating that the presence of more hydrogen bonding acceptors 

in the compound is associated with increased tendencies to associate with the membrane 

(either adsorption or absorption). 

 

Log P is not as prevalent with regard to membrane association, (it was included in just 

two of the PA membrane models, the “Universal” membrane model and the CA model).  

It also exhibits some variation in response, but in the case of BW-30, the “Universal” PA 

and CA, it was positively associated with M-Flux, suggesting that in these cases 

increasing hydrophobicity may increase compound association with the membranes.     
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As with P-Flux, there was general agreement between the “Universal” PA model inputs 

and direction of influence as the individual PA models.  Once again, none of the 

membrane parameters were included in the final model, although they were present 

during model construction.  As with the P-Flux, this indicates that none of the membrane 

parameters included in the modeling were more influential than the compound molecular 

descriptors in predicting the interaction of the compounds with PA membranes. 

 

The CA model describing M-Flux differed from the PA models in the direction of 

influence the charge/polarity-related descriptors, possibly indicating a difference in 

mechanism of interaction between the compounds and the CA membrane. 

3.1.3.1.1.3 Relative R-Flux Sensitivity Index Analysis:  Molecular Descriptors 

Associated with the Ability of RO Membranes to Repel 

Compounds at the Membrane Surface 

 
Molecular descriptors and their sensitivity indices are shown for the R-Flux models in 

Table 15c.  There are molecular descriptors in these models which appear in both the P-

Flux and/or M-Flux models, including Py, Q, SaaCH, SdssC, Gmax, Gmin, nxch6, 

idcbar, LogP and numHBa. Again, as with the other compound flux models, responses of 

the individual membrane models varied with respect to the individual molecular 

descriptors included in the R-Flux models.  Also, as with the other compound flux 

models, the molecular descriptors are related to charge/polarity, molecular complexity, 

hydrophobicity or hydrogen bonding, although not all membrane models contain 

descriptors from all of these groups.  The complexity of the models covers a range similar 

to that seen with the other flux models (from 4 inputs for BW-30 to 10 inputs for TFC-

HR).  There was a general tendency for the sensitivity indices for R-Flux to be opposite 

those noted for the M-Flux, and as R-Flux is a measure of the tendency of compounds not 

to associate with the membranes, this is not a wholly unexpected result. 

 

Charge/polarity descriptors serving as inputs for the R-Flux models that were not 

included in other flux models include ABSQ (the sum of the absolute value of the 
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charges on all atoms in the compound), MaxNeg (the largest negative charge over the 

atoms in the compound), Pz (the component of the dipole moment along the compound’s 

inertial Z-axis) and SdO (the sum of all E-state values for the doubly bonded oxygen 

atom in the compound).  There was in general a negative relationship noted between 

charge-related inputs and R-Flux in most of the models.  The most commonly represented 

molecular descriptor related to compound charge was Gmin, which was also strongly 

represented here as it was in the M-Flux models, except that its direction of influence is 

reversed.  Q (the magnitude of the principal quadripole moment) was contained in three 

of four PA models and Gmin was contained in all PA models. 

 

Regarding molecular complexity, nxch6 and idcbar were shared with other flux models, 

but sumdelI (the sum of the delta intrinsic states of atoms in the compound), Wt (the total 

Weiner number) and the kappa shape indices k2 (encoding the degree of central 

branching in the compound) and k3 (encoding the degree of separated branching in the 

compound) were unique to the R-Flux models.  The direction of influence of molecular 

complexity indices tended to vary; however, they were on the overall positive, indicating 

that for the most part, R-Flux tended to increase with increases in molecular complexity. 

 

Where models included LogP (BW-30 and TFC-HR), as an input parameter, its 

sensitivity index was negative, indicating that compounds with lower hydrophobicity 

tended to remain unassociated with the membrane.  In the case of BW-30, this effect was 

opposite that for M-Flux and similar to that for P-Flux, consistent with a model in which 

hydrophobic association with the membrane removed compounds from solution on the 

feed side and also prevented them from passing to the product side. 

 

The number of hydrogen bond acceptors (numHBa) was again included in three of the 

four PA models, as well as in the “Universal” PA model.  In this case, the sensitivity 

analysis indicated a negative relationship between the number of hydrogen bond 

acceptors in the solute molecules and the ability of the molecule to remain free in the 

feed.  This is consistent with the results for the M-Flux, which indicated an opposite role 

for this parameter, and for the P-Flux models as well.  This suggests that hydrogen 
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bonding may facilitate the attachment of compounds to the membrane as well as facilitate 

their transport through the membrane matrix. 

 

Once again, there was general agreement between the “Universal” PA model and the 

individual PA models with regard to the inputs emphasized and the direction of their 

influence.  In this case, as with the other “Universal” PA models, no membrane input 

parameters survived in the final evolution of input parameters, indicating that the 

measured membrane parameters were far less predictive of the ability of the membranes 

to reject compounds at membrane-feedwater surface than were the molecular descriptors. 

 

The CA model was also in general agreement with respect to the type and direction of 

influence of the molecular descriptors.  The CA model tended to emphasize the 

charge/polarity descriptors, and included the absolute molecular charge (ABSQ) as one of 

the more influential inputs.  The sensitivity index suggested that the R-Flux was 

positively related to compound absolute charge. 

3.1.3.2 Validation of the “Universal” PA ANN Models – Comparison with the 

Individual PA Models 

 
The success of prediction of the “Universal” PA ANN model was evaluated by 

comparing it to the outputs of each individual PA membrane models.  These comparisons 

were determined for P-, M- and R-Fluxes (Figs. 20a through 23c).  In these figures, the 

closed circles represent the specific PA membrane models while open circles represent 

the “Universal” PA model.  All the “Universal” models agreed reasonably well with the 

individual membrane models.  The “Universal” PA models generally exhibited more 

noise, which is an expected result of them containing the combined statistical noise of all 

of the other PA membrane models.  It was also noted that, as with the individual 

membrane models, the R-Flux model was the noisiest. 
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3.1.4 Application of the ANN Models to the Master Compound List – 

Prediction of Compound Interactions with RO Membranes 

3.1.4.1 Prediction of Compound-Membrane Interactions; Determination of 

Prediction Success Using the “Virtual Mass Balance” Method 

 
The ANN models were applied to all 202 compounds in the master compound list to 

predict relative P, M and R-Fluxes for each of the 5 membranes used in the study as well 

as for the “Universal” PA model.  Following prediction of relative fluxes, the F-Flux was 

calculated from the predicted values by summation of the individual relative mass fluxes.  

This F-Flux represents the estimated total relative compound flux impinging on the 

membrane in the RMP assay, and by definition should have equaled 100 in all cases.  As 

each of the ANN models was developed independently of the other, this combination of 

their data to provide a “virtual mass balance” should have amounted to a conservative 

performance evaluation.  Based in the confidence intervals observed in the individual 

models, a somewhat subjective criterion was used to establish a noise band of ± 25% as 

the cutoff for the study.  Compounds whose predicted F-Flux values were outside this 

range were culled from the database for each membrane  

 

The final list of compounds, in alphabetical order, that were successfully modeled in the 

study is presented, for each membrane used in Tables 16a through 21c.  In these tables, 

the compounds appearing in boldfaced type represent the surrogates that were used to 

construct the predictive models.  The predicted values for the relative P-Flux, the relative 

M-Flux, the relative R-Flux and the summation of these values (the F-Flux) are presented 

to the right of each of the compounds..  

 

Based on the above criterion, success in prediction of the interactions between the 

organic compounds with the test membranes varied with membrane type.  With CA, the 

ANN models were capable of predicting the behavior of 58% of the compounds.  The PA 

models could describe the behavior of between 57% and 70% of the compounds.  The 
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“Universal” PA model was the most flexible, and was able to predict the behavior of 76% 

of the compounds in the master compound list. 

3.1.4.2 Interpretation of the Relative Flux Table Data 

 

The relative fluxes presented in Tables 16a through 21c may be used to gain insight as to 

the expected performance of the membranes on a given compound.  In general, 

compounds exhibiting a low relative P-Flux and a low relative M-Flux (and a 

concomitantly high relative R-Flux) will be rejected well by the membrane in question 

(they would fall in quadrant “A” in a quadrant diagram such that presented in Figure 8a).  

Because the membrane interaction is predicted as being low, rejection should be 

relatively insensitive to mechanisms such as compound binding and saturation of the 

membrane material. 

 

If a compound presents a high value for the relative P-Flux and a low value for the 

relative M-Flux (also a low value for the relative R-Flux), then the compound is passing 

through the membrane with little interaction.  The membrane is providing neither a 

mechanical or adsorptive/absorptive barrier to the compound in this case.  Compounds in 

this category are not well susceptible to removal from the feed by reverse osmosis using 

the particular membrane in question. 

 

Finally, in situations where the P-Flux is high and the M-Flux is high (but the R-Flux is 

low), the compound is being removed by the membrane by a largely 

adsorbtive/absorptive mechanism.  Compounds exhibiting this behavior are initially 

blocked from the product water effectively, but as the membrane begins loading with 

bound material, removal may begin to suffer, especially should the compound be 

removed by absorption into the membrane structure (or the support materials).  

Compounds exhibiting this sort of behavior could eventually prove problematic if 

provided to the RO system in low concentrations over long time periods as opposed to 

spikes with long periods in between. 
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3.1.4.3 Estimation of Membrane Percent Rejection from the Relative 

Compound Flux Data 

 

It is possible to convert the relative flux data provided by the RMP assay into a percent 

rejection value.  Two mass fluxes can provide the basis for this sort of conversion; the 

relative P-Flux or the relative R-Flux (as described in the methods section).   

 

Rejection calculated by relative P-Flux is based on two principal mechanisms:  

mechanical exclusion and adsorptive/adsorptive compound-membrane interactions.  This 

is the “classical” method of determining RO membrane rejection.   In the field, as with 

the RMP assay, rejection does not take into account association of the compound with the 

membrane at all (e.g., a high rejection doesn’t indicate a priori that the compound is 

being physically rejected at the feed/membrane interface).   

 

On the other hand, percent rejection determined by the relative R-Flux value is based 

solely on the interaction (or lack of interaction) at the membrane surface.  It is indeed 

“rejection” directly into the feed; thus the relative R-Flux value (as defined in this study) 

directly represents a “percent rejection.” 

 

Percent rejection values predicted by all of the ANN models, determined by both P-Flux 

and R-Flux methods, are presented for each membrane used in the study as well as for the 

“Universal” PA membrane model in Tables 22a through 22e.  All of the compounds used 

in the study were included in these tables in alphabetical order.  Blank cells in these 

tables indicate compounds whose behavior could not be predicted by a particular 

membrane model. 

 

Compounds exhibiting large percent rejection values determined by both P-Flux and  

R-Flux (such as Diazinon, Disulfoton, Lincomycin, Mestranol, and Triphenyl Phosphate) 

suggest very good rejection, as the compounds are not only poorly able to pass through 

the membrane but are also poorly able to associate with the membrane material (similar 

to the situation of compounds in the “A” quadrant of Fig. 8a).  In the case of compounds 
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in which the rejection as determined by P-Flux and R-Flux is both nearly equal and 

moderate to low (such as Bromochloromethane, NDMA, and Urea), the compound passes 

through the membrane without interacting with it.  RO in this instance provides a 

relatively poor barrier to the compound (similar to the situation with compounds in the 

“B” quadrant of Fig. 8a).  Finally, when the rejection based on P-Flux is high but 

rejection based on the R-Flux is low, (such as with TCE, PCE, 4,6 Dichlorophenol, 

Acetaminophen, Benzene, Dibromoacetonitrile, 17a Estradiol, and Estrone), the 

compound is being removed mainly by adsorption/absorption to the membrane.  In this 

case, the compound’s rejection may initially be very good, and remain good so long as 

the compound is present in short spikes.  However, if the compound is chronically 

present in the feed, as the membrane begins to saturate with the compound, rejection may 

significantly degrade.  Therefore, compounds with high P-Flux rejection but poor R-Flux 

should be regarded as potentially problematic. 

 

3.1.5 Comparison of Rejection Predicted by the ANN Model to Rejection 

Reported in the Literature and Field 

 
The rejection results predicted by the RMP assay data and the ANN models for P-Flux 

were compared to results reported in the literature and from the field (Table 23).  Data 

were compiled for 18 compounds, including pharmaceuticals, disinfection byproducts, 

pesticides, endocrine disruptors, low molecular weight aromatic hydrocarbons, and 

others.  In general, rejection predicted by the ANN models for PA and CA membranes 

exhibit very good agreement with that reported in the literature or from the field. 

 

3.1.6 Instances where Models Failed to Predict Compound Behavior:  Gap 

Analysis and Suggestion for Further Study 

 
Even though a reasonably large proportion of the master compound list (~25%) was 

included as surrogates for model construction and some care was taken to insure that the 

molecular properties of the surrogates were diverse, the resultant ANN models were still 
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unable to predict the behavior of many compounds.  The failure rate varied somewhat 

depending on the membrane being modeled; however, in a many cases the same 

compounds were observed to fail prediction in multiple membrane models. 

 

Table 24 shows a listing of compounds that failed in 75% or more (3 or more) of the 

polyamide models, and includes 45 compounds (slightly less than 25% of the total 

number of compounds examined).  These compounds possessed molecular properties 

outside of the experience of the ANN models, and thus the models were unable to predict 

their behavior.   

 

Failure of the models could be due to two reasons:  either there were insufficient 

surrogates chosen to define one or more of the original QSAR molecular descriptor 

groups initially identified in the study, resulting in too narrow a variation of molecular 

properties, or else the original QSAR molecular descriptor groupings were not 

appropriately related to the compound-membrane interactions that were modeled.  The 

very small number of total exemplars used in ANN model construction may have been 

problematic; only 51 surrogates were used in the study whereas often hundreds or 

thousands of exemplars are typically employed in constructing ANN models.  For  a 

small number of surrogates as was employed in this study to yield a highly predictive 

model requires the system under study to be very well-behaved and relatively simple so 

that it may be adequately defined with a limited number of points scattered in  

n-dimensional space.  Clearly, the failures observed in this case indicate that this system 

is more complex than can be adequately defined by only 51 different input patterns. 

 

Figure 24 shows the fraction of compounds in the QSAR descriptor clusters that were 

represented by surrogates (the density of information defining the cluster) plotted against 

the percent of cluster compounds failing to model (compound failure defined as the  

F-Flux failing to be predicted by at least 3 of the 4 PA ANN models within ± 25%).  The 

numbers on the chart represent each of the QSAR descriptor clusters identified in the 

study.  The general expectation is that failure of the ANN models will be inversely 

proportional to model experience; that is, the greater the representation of a cluster by 
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surrogates, the greater the ability to predict behavior of the cluster compounds. Where 

surrogates representing a cluster were sparse (clusters 11, 17, 9 10, 2) model failure rates 

were relatively high and generally increased in proportion to lack of exemplars.  In this 

case, clearly the model experience is lacking, creating significant information gaps.  

More surrogate compounds representing these clusters should materially improve 

prediction of the models. The negative slope of the trend line supports this general 

hypothesis, but the trend is relatively weak, indicating that other factors influence failure 

other than simply the absence of sufficient exemplars for each cluster.  

 

The original QSAR molecular descriptor clusters were chosen based on a suite of 

molecular descriptors not necessarily related to compound-membrane interactions.  Thus, 

compounds may have been grouped on the basis of properties not germane to these 

interactions.  The data presented in Fig. 24 suggest this might have been the case.  For 

example, compounds in clusters 3, 4, 16 and especially 6, 15, 18, 19 and 20 could be 

adequately predicted by the ANN models (“adequate” meaning failure rate ≤ ~15%) 

using data provided by the surrogate compounds chosen for the study in spite of 

relatively poor surrogate representation.  On the other hand, compounds in clusters 1, 5, 

12, 13 and especially 8 failed to model even when they were relatively well represented 

by surrogates. 

 

In order to close the “gaps” in the ANN models, additional surrogates are needed that 

address the lack of information currently limiting predictive ability of the models.  

Moreover, the choice of compounds for this purpose may now be based on a smaller 

universe of molecular descriptors known to be related to compound-membrane 

interactions, as these descriptors were identified in the current study. 

 

Figure 25 represents a dendritic analysis of the 45 poorly modeled compounds.  As 

before, the intent of this analysis was to identify compounds with similar properties so 

that they may be clustered for purposes of surrogate identification.  A somewhat arbitrary 

criterion was adopted for separating clusters; a distance of 300 was chosen because, in 

general, it isolated like compounds well.  In addition to this criterion, a fine-tuning was 
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performed to separate clusters that appeared to have larger numbers of compounds, so 

that cluster size was reduced to no more than 7 compounds.  A total of 16 clusters were 

identified containing from 1 to 7 compounds. 

 

Addition of surrogate compounds chosen from these clusters should substantially 

improve predictability of the current models.  This approach should be considered as a 

future area of study. 

 

3.2 Analysis of MD Simulations 

3.2.1 System Energies 

 

Data presented in Fig. 36 indicates system potential energy fluctuations for the NDMA 

membrane simulation.  PCE data (not shown) were similar and, in each case, system 

potential energies initially increased, followed by a gradual decline to steady state.  The 

initial increase in potential energy was due to early interactions as the system temperature 

was raised from 0oK to 300oK in the first 0.1 ps of simulation.  Once the specified 

simulation temperature was reached, both systems drifted toward more relaxed 

conformations with lower overall potential energies. 

3.2.2 Diffusion Behaviors of NDMA and PCE 

 

Using center-of-mass (COM) positional data to dampen the effects of single-atom 

motions, NDMA and PCE trajectories were monitored over the course of the membrane 

simulations.  The data revealed that both compounds exhibited continuous, small-scale 

translocations (usually on the order of ~1Å) primarily centered in the local region of the 

membrane into which the compound had been first introduced.  Preliminary efforts to 

compute diffusion coefficients for NDMA and PCE were based on these small-scale 

translations (see below), but other types of longer-range excursions were also observed, 

particularly for NDMA.  It is these irregular long-range translocations that must be more 

fully documented and statistically described in terms of their magnitudes and frequencies 

of occurrence before accurate diffusion kinetics can be obtained.  For example, NDMA 

was observed to make two abrupt translocations beginning at about 20 ps of elapsed 
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simulation time.  These translocations can be observed in the COM trajectory paths 

shown in Fig. 37.   In the first “outbound” translocation, occurring at about 20 ps, NDMA 

traveled nearly 7Å away from its point of origin at t = 0 ps.  This was followed 

approximately 8-10 ps later by an equally abrupt “inbound” translocation and return to 

the immediate vicinity of the molecule origin (Fig. 38).  Following the inbound 

movement, NDMA was observed to resume small-scale excursions, but superimposed on 

this was a gradual drift away from the origin over the next 60 ps.  In contrast, PCE did 

not exhibit any large-scale translocations of the magnitude exhibited by NDMA.  

Moreover, PCE tended to reside within a fairly restricted region, traveling not more than 

~1-2 Å from its point of origin for the duration of the 200-ps simulation.  However, 

larger-scale movements of PCE might have been observed if simulation times were 

extended. 

 

The type of rapid translocation behavior in which a solute such as NDMA moves from 

one “vacancy” or void space in the polymer matrix to an adjoining void is referred to as a 

“jump” or “hop” (Fig. 39).  This motif of solute transport has been well documented for 

dilute gas molecules diffusing in amorphous polymers, such as carbon dioxide or 

methane in polyethylene or polypropylene (Takeuchi, 1990; Gusev et al., 1994; Takeuchi 

and Okazaki, 1996; Mueller-Plathe, 1994).  Such a jump mechanism has also been 

recently reported for water diffusion in PA membrane networks (Kotelyanskii et al., 

1998); and, in that study, it was demonstrated that the accuracy of water diffusion 

coefficients were critically dependent on the jump frequencies.  The jumps occur when 

the solute and membrane undergo conformational changes such that the solute can 

suddenly squeeze into and through a passage or channel that is temporarily formed 

between two adjoining void spaces in the membrane.  The probability of this happening 

depends on numerous variables including (i) the flexibility of the membrane and solute, 

i.e., how readily they can undergo conformational rearrangements by overcoming 

torsional barriers, (ii) the solute size and shape, and (iii) short- and long-range 

interactions with water and membrane atoms (i.e., electrostatic and van der Waals 

interactions).   
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Conventional calculation methods for solute diffusion coefficients (D) based on root-

mean-square (RMS) molecule displacements (<x
2
> = qiDt, where <x

2
> is RMS 

displacement, qi is the dimensionality factor, t is the displacement time step) are 

generally suitable for substances that demonstrate continuous localized diffusion 

behavior, i.e., diffusion that is unmarked by jumps.  However, as illustrated in Fig. 39, if 

abrupt and large translocations occur, it is necessary to compute diffusion coefficients 

based on the magnitude and frequency of such translocations. 

 

3.2.3 Calculation of Water and Solute Diffusivities and Theoretical Fluxes 

 

In spite of the limitations discussed above regarding the lack of information on solute 

jump frequencies, apparent diffusion coefficients for water (DBM) and the organic solutes 

(DAM) were nevertheless computed from the time-resolved RMS displacements of the 

compounds during selected periods of the MD simulations.  The RMS displacements 

were computed from molecule COM coordinates to dampen the effects of single atom 

motions.  The results of a typical diffusion coefficient calculation for five randomly 

selected water molecules and the NDMA solute are given in Fig. 40.  Diffusion 

coefficients and theoretical solute fluxes are presented in Table 26.  At this stage, the 

diffusion coefficients should be regarded as providing only relative indications of 

transport kinetics.  As expected, the organics diffused relatively more slowly than water 

within the membrane matrix. It should be noted that whereas the diffusion coefficients for 

NDMA and PCE were nearly indistinguishable in pure water simulations (~7.82x10-6 

cm2/s), PCE diffusion in the hydrated membrane system (1.92x10-6 cm2/s) was nearly 

four-fold less than that of NDMA (7.25x10-6 cm2/s).  The similarity of NDMA 

diffusivities in the water and membrane systems reflects the fact that calculations for DAM 

were based on local molecule excursions rather than on discontinuous jump frequencies. 

 

Theoretical fluxes (JA) for NDMA and PCE were calculated based on the modeled 

diffusivities (DAM) and experimental values for KA, the water-membrane equilibrium 

partition coefficient:  JA = -DAMKA(∆CA/ σ), where ∆CA is the solute concentration 

gradient and σ is the thickness of the PA discriminating layer (~10-5 cm).  Water flux, JB, 
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was calculated from the expression: JB = -CBMDBMVBM(∆P - ∆π)/(RTσ), where CBM is 

the membrane  solvent concentration (12.3 M), DBM is the modeled diffusivity (Table 

26), VBM is the solvent molar volume, ∆P - ∆π is the net pressure, R is the gas constant, 

and T is the temperature (300oK).  The solute partition coefficient, KA, is perhaps the 

most critical factor and at this time can only be crudely estimated from experiment.  

Values for KA were determined by rinsing membranes in ultrapure water following 

laboratory rejection tests using radiolabeled compounds.  It was assumed that the 30-

minute rejection test provided sufficient time for equilibration between feed and 

membrane solute concentrations, although this has not been experimentally verified.  It 

was also assumed that the water rinse was adequate to extract unbound compound from 

the fabric backing and that remaining label was evenly distributed throughout the 

polysulfone support and the much thinner PA layer.  Given the inherent weaknesses of 

the method and underlying assumptions, the KA values must be viewed as conservative 

and very likely too high, possibly by orders of magnitude.  It is perhaps noteworthy that 

KA for PCE was ~24-fold higher than NDMA which is consistent with the lower water 

solubility (higher LogP) of PCE.  Actual feed and permeate solute concentrations were 

used to calculate the solute gradient, ∆CA, and a net driving pressure of 100 psi was 

assumed.  Poor agreement was observed between theoretical and experimental fluxes, 

with modeled fluxes for NDMA and PCE ranging from ~4-6 logs higher than 

experimental values (Table 26).  However, good agreement was observed between 

calculated water flux and that expected for a PA membrane.   The principal reasons for 

overestimation of the solute fluxes are likely that (i) the modeled diffusion coefficients 

for the organics were too large since jump frequencies have not yet been determined, (ii) 

the KA values were grossly overestimated, or (iii) both of the above. 

  

3.2.4 Water and Membrane Interactions with the Organics 

 

Although the mass of PCE (~165 amu) is greater than that of NDMA (~74 amu), this 

difference alone is insufficient to explain the discrepancy in their relative motilities in the 

PA membrane.  Perhaps the simplest explanation for retarded PCE transport is that it 

interacts more with the membrane polymer.  In order to determine if PCE was interacting 
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more strongly than NDMA with the membrane, a Tcl script was developed to extract the 

energy of interaction (i.e., “energy of association” or “binding energy”) of the organic 

species with the hydrated membrane, i.e., with the water-membrane complex, at each 

step of the simulation playback.  As illustrated in Fig. 41, the binding energies were 

computed by subtracting the component energies for (i) the water-membrane complex 

and (ii) the organic species from the geometry-optimized total system energy at specified 

simulation intervals (e.g., every 10 ps).  The results, which are shown in Fig. 42, indicate 

that on average PCE was more strongly associated with the hydrated membrane complex 

than was NDMA, i.e., the association of PCE with the membrane-water complex was 

energetically more favorable.  The greater binding of  PCE to PA membranes observed in 

the laboratory RMP assay lends support to this hypothesis. 

 

Based on these data, it was hypothesized that PCE should spend a larger proportion of 

time in closer proximity to PA membrane atoms than NDMA.  Moreover, simulation 

playbacks suggested water molecules tended to associate more closely with NDMA than 

PCE, an observation that was not entirely unexpected given the ability of NDMA to 

hydrogen bond with water.  To confirm this observation, a Tcl script was written to 

monitor the association of NDMA and PCE with nearby water molecules, as well as with 

membrane atoms.  The method invoked a virtual sphere or “shell” around the organic 

solute.  The shell radius was set at 4.0Å because it was felt this distance was a reasonable 

compromise between too few water molecules or membrane atoms to analyze and so 

many that subtle proximity effects (such as hydrogen bonding) would be averaged out by 

more distant molecules or atoms.  Water molecules (COM coordinates) or polymer atoms 

(point coordinates) that penetrated the shell at each step of the simulation were monitored 

during playbacks.  Data were collected for both of the membrane simulations discussed 

above, as well as for MD simulations in which the organic solutes were immersed in pure 

water (no membrane).  The results of these analyses are summarized in Fig. 43 and Table 

27, respectively.  On average, over the course of the 200 ps membrane simulations, more 

than four times (4X) the number of water molecules entered the 4Å NDMA shell 

(ave=1.68±0.80, N=200) as compared to the PCE shell (ave=0.40±0.62, N=200).  The 

mean distances to shell water molecules was nearly equal for both organic solutes.  
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Because the association energy of PCE for the hydrated membrane was lower than for 

NDMA (Fig. 40), it was anticipated that a correspondingly greater number of membrane 

atoms should be found within the PCE shell.  However, the opposite situation was 

observed with >6X membrane atoms falling within the NDMA shell than the PCE shell.  

Compared to the membrane systems, greater numbers of water molecules associated with 

both NDMA and PCE in the pure-water simulations, presumably a result of higher water 

concentrations (55 M vs.12.3 M).  However, in the pure-water simulations, there was a 

disproportionate increase in the number of water molecules associating with PCE (Table 

27).  Evidently both organic solutes compete for water and membrane interactions; 

however, the disproportionate increase in water association with PCE in the pure-water 

simulations argues for a greater interaction of PCE with membrane atoms.  The relative 

lack of a hydration field around PCE might contribute to stronger long-range electrostatic 

interactions with membrane atoms.  Since the membrane is essentially a condensed 

immobile phase, an increase in reactivity or affinity of an organic with the membrane 

would result in reduced transmigration (and thus higher observed rejection).  

 

3.2.5 Idealized PA Membrane Pore Model to Estimate Solute-Membrane 

Interactions 

 

According to the solution-diffusion theory (Lonsdale et. al., 1965), a first-principals 

calculation of organic solute fluxes requires knowledge of the solute diffusion (D) and 

membrane partition coefficients (Ka).  The diffusion coefficient can be directly obtained 

from MD simulations from RMS displacement measurements of solute motions.  

However, computing the partition coefficient Ka is more problematic.  A useful 

hypothesis is that solute partitioning into the PA film depends on the interaction potential 

of the solute with membrane and water atoms.  Thus, stronger solute-membrane and 

weaker solute-water interactions should result in greater membrane partitioning.  An 

idealized PA membrane pore model (as illustrated in Fig. 44) should allow rapid 

estimation and comparison of relative solute-membrane interaction potentials.  The 

solute-membrane potential may be computed for different solutes introduced into the 
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hydrated pore space.  Using this approach, modeled potentials were compared to 

experimental measurements of solute-membrane associations obtained by the RMP assay 

for NDMA, PCE and 17a-Estradiol (Fig. 45).  Although these are limited results, they 

suggest a possible correlation between modeled compound-membrane potentials and 

experimental determinations of solute-membrane association.  The database developed 

from the RMP assay and ANN modeling could provide a significant database of low 

molecular weight compounds with which to further test this approach.  

. 
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4 CONCLUSIONS AND RECOMMENDATIONS 

 
4.1 QSAR ANN Model Predictions of Compound-Membrane Interactions 

4.1.1 Interaction of Organic Compounds with RO Membranes 

 
According to the solution-diffusion theory (Wiesner et. al., 1996) solutes passing through 

RO membranes do so by entering the membrane matrix from the feed side, then driven by 

diffusive forces pass through the membrane matrix to the product side, and finally enter 

the product.  The primary association with the membrane surface, the rate of passage 

through the membrane and final release from the product side of the membrane is 

governed by the intrinsic rate of diffusion of the solute through the membrane, plus the 

kinetics of adsorption and desorption to and from the membrane surfaces.  These factors 

are in turn dependent on the nature of the solute and membrane chemistry; specifically on 

the molecular skeletal structure, distribution of electron density, nature of chemical 

constituents, chemical reactivity, and other physicochemical parameters.  

 

The nature of solute chemistry is for the most part well understood; however, the nature 

of the membrane chemistry is more of a mystery.  Although the basic composition of 

both CA and PA membrane polymers are known, fine details of molecular structure 

(degree of internal cross-linking, ionization, etc.) of membrane polymers in situ still are 

elusive. Measurements of zeta potential indicate that both PA and CA membranes 

surfaces carry negative charges at lightly acidic to neutral pH (5.5 – 7.5).  Some of these 

negative charges are due to the presence of deprotonated carboxylate groups.  However, 

because commercial RO membranes are often surface-modified by proprietary means, the 

precise nature of the surface chemistry of these negative groups remains largely 

unknown.   These groups may significantly affect solute adsorption.  Moreover, the 

precise chemical structure of the internal membrane matrix is almost a complete mystery.  

PA membranes are perhaps more enigmatic than CA membranes.  The location of the 

permselective layer in the PA membranes remains controversial.  These membranes 
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typically present a blebbed and convoluted surface in cross-section by electron 

microscopy (Fig. 28), and whether or not the thin (often <20 nanometer) membrane 

surface of the blebs or the PA-polysulfone interface is principally responsible for 

permselectivity is not known.  The density of the permselective layer, therefore, is 

unclear.  Also, the nature of the internal membrane chemistry is also largely unknown.  In 

the case of PA membranes, the free carboxylate groups (those not involved in 

crosslinking) may or may not be protonated, a condition that materially affects the 

internal chemical milieu of the membrane. 

 

Lack of complete understanding of the nature of the chemistry of RO membranes makes 

prediction of compound-membrane interactions by first principals difficult.  For this 

reason, an empirical approach was undertaken in this study.  In this project, organic 

compounds with disparate molecular properties served as “probes” to delineate the nature 

and extent of organic compound-membrane interactions.  The results of these interactions 

served as exemplars that were used to train a neural network, which then could act as a 

silicon analog of the membrane system.  From this model, compound chemical properties 

affecting compound-membrane interactions could be elucidated, and the behavior of 

other organic compounds predicted. 

 

During membrane operations, compounds are transported to the feed side of the 

membrane by a combination of convective transport and diffusion.  The vector of 

convective transport into the membrane, at 28 GFD water flux (nominal for PA 

membranes at 150 PSI in the study), was on the order of 13 microns sec-1.   It was 

presumed that convective flux was the dominant transport mechanism conveying solute 

molecules to the membrane surface during RO membrane operation. 

 

The mass of solute compound transported to the membrane per unit area per unit time 

was defined as the feed flux (F-Flux).  Molecules comprising the F-Flux were presumed 

to interact with the membrane in one of three ways (Fig. 1):  they could fail to interact 

with the membrane and remain in the feed solution (R-Flux), they could bind onto or into 

the membrane (M-Flux), or they could pass completely through the membrane and enter 
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the product (P-Flux).  The three membrane solute fluxes may be expressed as percentages 

of the feed flux.  In this case, they represent the proportions of compound that interact 

with the membrane. 

 

Rejection, in the classical sense, may be expressed as the difference between the relative 

mass of compound impinging on the membrane and that passing through the membrane, 

divided by the mass impinging on the membrane.  This expression represents a 

combination of compound removal by rejection at the membrane surface and compound 

removal as a function of interaction with the membrane matrix, either by adsorption or 

absorption.  Although initially nearly constant, rate of removal by adsorption or 

absorption mechanisms are expected to exhibit decay, such that as the membrane 

saturates it eventually offers no significant compound retardation.  Thus, spike studies 

may show large percent rejections (based on P-Flux or traditional means of determining 

solute rejection), but tests involving longer exposures of the membrane that allow 

equilibration with the solute may ultimately result in poorer membrane performance. 

 Rejection estimated by R-Flux, on the other hand, measures direct interaction of solutes 

with the membrane-water interface, and is expressed in relative proportion to the feed 

flux as described above.  This is another means by which percent rejection may be 

estimated.  In this case, a large value for rejection is indicative of poor interaction with or 

penetration through the membrane material, and likely provides a good indication of 

longer term membrane performance (apart from properties of the membrane surface or 

internal matrix changing significantly with time). 

 

4.1.2 Use of QSAR Molecular Descriptors to Explain Compound Behavior 

 
A QSAR analysis using basic molecular descriptors defining basic molecular structural 

and electronic features forms a powerful basis for predictive modeling because the 

fundamental nature of these numerical factors tends to reflect simpler molecular issues.  

Physicochemical properties of molecules (solubility, vapor pressure, melting point, 

solubility, etc.) are based on combinations of these more basic descriptors.  Models using 

descriptors of molecular structure as a basis for predicting RO membrane performance 
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provide a means of analyzing the compound-membrane interactions in terms of 

fundamental molecular interactions.  Such QSAR molecular descriptors have recently 

been used to evaluate molecular chemistry responsible for compound toxicity (Votano et. 

al., 2004 in press). 

 

4.1.3 Use of Radiolabeled Tracers and the RMP Assay as a Rapid Method to 

Evaluate Compound Fate 

 
The use of radiolabeled compounds in this study provided a means by which solutes 

could be traced as they interacted with RO membrane materials, and has been 

successfully been used by others to examine the fate of organic compounds interacting 

with RO and NF membranes (Schaffer et. al., 2003).  Detection of the label is simple 

using liquid scintillation counting.  Evaluation of organic compound mass in the product 

was completely straightforward, involving direct counting of recovered product.  

Determination of mass in the membrane was more challenging, but was achievable.   

 

Measuring uptake of compounds by the membrane materials was complicated by the fact 

that it was impossible to determine the location of bound compound.  RO membranes 

used in the study were commercial membranes, and therefore consisted of several 

different layers of dissimilar materials.  In the case of the CA membrane, in addition to 

the permselective layer there was the support backing.  The PA membrane consisted of a 

more complex sandwich, with the permselective PA layer resting on a microporous 

polysulfone layer, which in turn was supported on a polyester backing.  Labeled 

compound could have bound entirely on the feed surface of the membrane, entirely inside 

the permselective PA layer, or if it penetrated this layer could have bound up in the 

polysulfone layer or the backing material.  Therefore, for purposes of this study, the term 

“membrane” actually refers to the whole commercial product and not solely to the 

permselective layer. 

 

Holdup of labeled compound in the bulk product water contained in the interstices of the 

polysulfone and backing layer was another potential source of experimental error.  The 

thorough washing steps were meant to address at least some of this potential error.  
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Although it was not possible to directly evaluate the degree of holdup for all compounds, 

it was possible, (using urea) to indirectly determine that for the most part holdup error 

was probably small.  This compound exhibited poor binding to the membrane even 

though a large amount passed into the product, and presumably would have filled the 

interstices along with the bulk water.  In the case of the ESPA-2 membrane sample, the 

pore volume of the entire membrane coupon was estimated at ~3.9 µL (by gravimetric 

determination of dry and hydrated coupons).  In this case, the product contained 

~2,479,000 DPM/mL.  If the washing steps removed none of this activity from the pore 

water in the coupon, the total counts remaining in the coupon due to product in the pore 

space would have amounted to ~9,700 DPM.  The membrane activity recorded for 

ESPA-2 and urea was actually ~25,800 DPM, therefore the pore water holdup could only 

have accounted for ~38% or less of the observed mass in the membrane.  As urea bound 

poorly to the membrane and was present at the highest concentration in the feed, this 

would have been a worst-case scenario.  For compounds with far lower product 

concentrations and far higher membrane binding, the error due to pore water holdup was 

likely negligible. 

 

The RMP pressure cell provided a convenient means for determination of compound-

membrane interactions.  The cell was easy to assemble, operate and clean, and up to 10 

units could be set up on the bench in parallel.  The small size of the test coupon presented 

a potential challenge, but randomization applied during swatch and coupon harvesting, 

replicate assay measurements and statistical filtering of results sufficiently addressed this 

issue.  The study was somewhat hampered, however, by lack of availability of many of 

the organic compounds in radiolabeled form, and especially in 14C radiolabeled form.  

Lack of the crossflow component typically resulted in underestimation of rejection 

compared with an RO block test unit, especially with the CA membrane, but the 

membrane performance with respect to the order of rejection (poor to good) of 

compounds observed in the block tester was paralleled by the RMP assay. 
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4.1.4 Application of ANN Modeling to Determine Salient Parameters 

Related to Compound Interactions with RO Membranes 

 
Artificial neural networks (ANNs) are useful for providing explanatory models for 

myriad and diverse systems, from industrial processes control to stock market 

forecasting.  Quite recently, ANN models have been constructed capable of successfully 

predicting organic compound toxicity (Votano et.al., 2004, in press). 

 

In the last few years, commercial software packages combining ANN construction kits 

with GAs and providing a highly user-friendly interface (such as Neuralware’s 

Neuralworks Predict) have been made available to the scientific community. The advent 

of faster algorithms and faster computer platforms have greatly facilitated application of 

these advanced mathematical tools to perform data mining and to model complex 

processes. 

 

For their usefulness, ANN models do have some shortcomings.  They depend, for 

accuracy, on sufficient exemplars being provided to adequately define the nature of the 

system being modeled.  When the system being explained is relatively simple (may be 

explained by a small collection of continuous functions, e.g.), a small number of 

exemplars may be used to construct an adequate model, provided the exemplars represent 

well the vertices of the system.  Often this is not the case; it is typical to employ hundreds 

to thousands of exemplars to construct ANN models describing natural systems.  ANN 

models, while they may predict behavior of the system very well within the range of 

input parameters provided by the exemplars used in their construction, often are poorly 

able to extrapolate beyond the range of the exemplars (especially in complex systems).  

Therefore, it is important to define the input data well before attempting to construct 

predictive models using this technique. 
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4.1.5 Successful Construction of ANN Models Describing Compound-

Membrane Interactions 

 
In this study, there were at the outset a relatively large number of potential input 

parameters (QSAR descriptors) and a relatively small number of exemplars (QSAR 

descriptors linked to observed compound-membrane interactions) with which to build the 

models.  Like many multivariate methods, choice of the input data set can be one of the 

most important steps in constructing a successful ANN model. Inclusion of a large 

number of weakly influential or non-influential inputs can greatly weaken the 

effectiveness of a multivariate model.  However, the fact that only a limited number of 

exemplars were available with which to select inputs required a slightly modified 

approach in winnowing the input set prior to model construction. 

 

Cluster analysis (dendrogram) was initially employed to reduce the number of QSAR 

descriptors.  In this case, compound-membrane interactions were not considered; rather, 

the full set of compound data were used.  QSAR descriptors were divided by type and 

clustered.  From each of these clusters, a descriptor was chosen as a surrogate to 

represent the cluster.  In this fashion, the original input set was winnowed down to 73 

QSAR descriptors.  From this point, compound-membrane interactions were considered 

in further winnowing the input set.  A GA was used to reduce the QSAR descriptor set to 

a minimum of 33 inputs descriptive of compound-membrane interactions.  ANN models 

were constructed from this pool of descriptors.  In this fashion, a set of salient inputs was 

detected using the limited number of laboratory data available for the study.  

 

The input sets converged upon by this construction technique present a good solution to 

describe each compound-membrane interaction problem; however, it may not be the sole 

solution.  It should be noted that GAs and the algorithms used to construct the ANN 

models rely on random seeds, and thus there is a possibility that more than one set of 

inputs may adequately be employed.  In order to help select the most “global” set of 

inputs, iterative applications of the GA were employed during the initial input screening 
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to identify and select the most commonly influential input parameters prior to ANN 

model construction. 

 

The ANN models constructed in the study to describe P-, M- and R-Flux values 

determined by the RMP assay were in general fairly robust.  They were able to explain 

with reasonable accuracy the variations in behavior observed amongst the surrogate 

compounds selected for the study. 

 

It was possible to construct a reasonable “Universal” PA model by incorporating all of 

the data for each of the 4 PA membranes and adding PA membrane parameters to the 

potential input list.  This model exhibited more noise than did the individual PA models, 

which is not unexpected as it represents the sum of the experimental noise in all 4 PA 

membrane models as well as incorporates the intrinsic differences in performance that 

occurred between membranes.  It is notable that, for many compounds, it predicts the 

nature of compound-membrane interactions nearly as well as the individual PA models, 

and thus may at least serve as a “first cut” prediction of general PA membrane 

performance. 

 

Interestingly, none of the membrane parameters survived in the final “Universal” PA 

models for P-Flux, M-Flux or R-Flux, even though some of these parameters represented 

several fold changes in value between membranes (Table 3).  This does not at all indicate 

that membrane differences do not play a role in the variations observed in membrane 

performance; indeed, all of the individual PA membrane models exhibit differences in 

inclusion of molecular descriptors.  However, it does indicate that the particular 

membrane properties selected for inclusion in the models were not nearly as influential as 

the compound molecular descriptors in predicting compound-membrane interactions. 
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4.1.6 QSAR Analysis – Relating Descriptors to Compound-Membrane 

Interactions 

 
Figure 26 shows a composite of the QSAR molecular descriptors that the ANN models 

associated with each of the basic compound-membrane interactions (P-Flux, M-Flux and 

R-Flux) defined in the study. 

 

Analysis of the parameters included in each of the models and the direction and 

magnitude of their influence (sensitivity analysis) gives some general insight as to the 

possible molecular mechanisms involved in the compound-membrane interactions 

observed in the study.  It would be expected that differences would be seen between 

membrane types with completely disparate chemistries (PA vs CA), and indeed this was 

observed.  Although none of the PA membrane models utilized exactly the same QSAR 

descriptor input set, some themes could be noted amongst the descriptors associated with 

each type of compound-membrane interaction (P-, M- or R-Flux). 

 

If the molecular descriptors are considered in broader categories related to 

charge/polarity issues, molecular complexity, hydrophobicity and hydrogen bonding, 

then some similarities may be noted amongst the different membrane models.  In many 

cases, the direction of relationships commonly occurring in the R-Flux and M-Flux 

models show reversed signs, indicating the inverse relationship possible between these 

interactions (molecular mechanisms favoring strong membrane surface binding, for 

example, would also favor reduced release of compounds from the membrane surface to 

the feed). 

 

Charge and polarity descriptors were very much represented as inputs in all of the 

models, indicating that these molecular parameters were very much involved in 

compound-membrane interactions.  This is not at all an unexpected result, as the 

literature already suggests that this should indeed be the case (Kosutic et. al., 2002; Fang 

et. al., 1976; Koyama et. al., 1982; Schafer et. al., 2003).  In the case of the M-Flux and 

R-Flux, the Gmin was commonly selected as by the PA membranes (and the “Universal” 
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PA models).  This molecular descriptor indicates the minimum atom E-state in the 

compounds.  This value is related to how electrophilic the atom is.  Electrophilic atoms 

participate in chemical bonding interactions, including hydrogen bonding.  In this case, 

the M-Flux (membrane association) was relatively strongly positively associated with 

Gmin values, while the R-Flux was strongly negatively associated with Gmin.  This 

suggests that compounds bearing more reactive atoms tended to interact more strongly 

with PA membranes (were less likely to be rejected into the feed).  

 

Descriptors of electrical dipole magnitude (P, Py and Q) were observed in several of the 

PA models.  In general, indications were that the greater the separation of charge across 

the molecule, the less likely the compound was found to associate with the PA 

membranes (and found to remain in the feed).  Compounds passing through the PA 

membranes were favored by increased dipole separation in the direction of the molecular 

Y-axis.  The CA membrane model presented a more confusing relationship, however.  

The Q sensitivity index was negative for R-Flux (increased charge separation, increased 

R-Flux), but P was strongly positive for the M-Flux, indicating that as dipole magnitude 

increased, the compounds associated more strongly with CA (which indicates increased 

polarity should favor decreased R-Flux).  

 

Hydrogen bonding acceptor density (numHBa) was also commonly related to compound-

membrane interactions in the PA membranes (included in 3 of 4 models).  The number of 

hydrogen bond acceptors in compounds was typically positively associated with M-Flux 

(and inversely associated with R-Flux) in the PA membranes.  The “Universal” PA 

models also shared this relationship.  In addition, this descriptor also appeared as an input 

in the P-Flux models for PA.  Hydrogen bonding may well facilitate interactions between 

compounds and the membrane (at least with PA), and in addition, facilitate transport 

through the membrane as well. 

 

Hydrophobic/hydrophilic interactions (LogP) appeared to be important in determining  

P-Flux for compounds (noted both for PA and CA membranes, but stronger with CA), 

but was only included in a few of the M-Flux models.  The direction of the sensitivity 
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index suggests that overall the more hydrophilic the compound, the more likely it will 

traverse the membrane.  It may be that the hydrophobic compounds interact with the 

membrane, but the interaction is swamped by the magnitude of the charge interactions, 

and thus didn’t appear in many of the M-Flux models.  Where it does appear most 

strongly (the BW-30 model and “Universal PA” model), the sensitivity index is positive, 

suggesting PA membranes favor binding of the more hydrophobic compounds. 

 

Molecular complexity, especially formula weight (fw) has been suggested as a key factor 

in determining rejection by RO membranes, and may be expected to be a major factor in 

determining membrane permeability (Schutte, 2003; Fang et. al., 1976; Kosutic et. al., 

2002; Wiesner et. al., 1996; Ozaki et. al., 2002; Slater et. al., 1983).  Complexity 

descriptors indeed appeared more often in the P-Flux models, but as a rule were not as 

universally represented as were the charge/polarity descriptors in the M- and R-Flux 

models.  Most notably, the chi index xvpc4 appeared in 3 of the 4 PA models, as well as 

in the “Universal” PA model, and the sensitivity index analysis indicated moderate to 

strong (but variable) influence.  With BW-30, ESPA-2 and the “Universal” PA models 

there was an overall negative influence between this descriptor and P-Flux, suggesting 

that as the complexity of the compounds increased (measured by patterns of adjacently 

amongst 5 atom groups, sensitive to heteroatom type), they were less able to pass through  

these membranes.  However, effects of other descriptors related to molecular complexity 

were more variable.  In general, though, it was suggested that the more complex 

molecules were less likely to pass through both PA and CA membranes.  Formula weight 

did appear in the P-Flux model for the TFC-HR membrane; in this case, as expected, flux 

through the membrane was favored by less massive molecules. 

 

4.1.7 Prediction of Compound-Membrane Interactions for Compounds in 

the Master Compound List 

 
Outputs of the ANN models of P-, M- and R-Flux values for each of the 5 membranes 

and for the “Universal” PA model (Tables 16a through 21c) suggest that predictions of 

compound behavior were possible in over half to three-quarters of the cases (depending 
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on the membrane).  Given the relatively small number of surrogate compounds available 

as exemplars, and the wide range of potential compound structures represented in the 

master compound list, this result is very encouraging.  That the sum of the membrane 

fluxes in these cases closes a “virtual mass balance” and the ability to match rejection 

with at least a handful of laboratory experiments and field observations (Table 23) is also 

very encouraging.  However, as the matrix employed in this study was relatively simple 

compared to field applications, much more data from the field will be needed to 

determine just how much the compound-membrane interactions elucidated in this study 

may be extrapolated to the field.  

 

It is possible, within the context of the conditions established in the study, to make 

comparisons between performance of the RO membranes and to assess the relative ability 

of the membranes to deal with classes of organic compounds of public health concern 

presented in the master compound list (Tables 22a through 22e).  The differences in 

rejection values based on the P-Flux and the R-Flux are especially illuminating, as 

instances where the R-Flux predictions of rejection are significantly lower than P-Flux 

predictions of rejection may signify compound removal by association with the 

membrane materials as opposed to a barrier mechanism.  It should be noted that the ANN 

models may predict negative values of rejection based on R-Flux as a consequence of 

noise in the models; in these instances extremely strong association between the 

compound and the membrane may be inferred, and observed removal based on P-Flux is 

predicted to almost entirely be due to adsorptive or absorptive mechanisms.  

 

The ANN predictions indicate that PA membranes, for the most part, appear to perform 

nearly equally well with respect to compound removal, although some exceptions may be 

found (dichloroacetic acid, molinate, methylene bromide, e.g.).  Most of the 

pharmaceutical compounds were predicted to be very well rejected by P-Flux; however in 

many cases a part of compound removal may be attributed to membrane association 

(rejection based on R-Flux < rejection based on P-Flux). The steroid hormones (estrone 

and the estradiols, e.g.) are examples. The ANN models also predicted that many of the 

disinfection byproducts (DBPs) should be removed well based on P-Flux rejection; 
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however, as with the pharmaceuticals, in many cases a large part of their removal may be 

due to membrane association (dibromoacetonitrile, bromochloroacetonitrile, 1,1, 

dichloropropanone, e.g.).  Metformin was predicted to be the most poorly rejected of the 

pharmaceuticals, and amongst the DBPs, bromochloromethane was predicted to be most 

poorly rejected. 

 

Compounds associating strongly with the RO membranes may bind to the membrane 

surface, enter into and bind within the polymer matrix, or pass through to the product side 

of the permselective layer and bind to the polysulfone or to the nonwoven support layer.  

The location and intrinsic ability of the molecule to penetrate the membrane is unclear 

based solely on data provided by the RMP assay.  For compounds poorly able to 

penetrate the membrane polymer matrix, surface binding may not lead to a serious 

deterioration in longer term rejection providing the compound does not significantly alter 

rejection properties of the permselective layer .  Desorption and penetration of such a 

compound would be expected to be relatively slow.  On the other hand, for compounds 

able to absorb into the membrane polymer matrix with facility, once the membrane 

concentration increases to saturation, desorption and subsequent penetration may result in 

a significant release of material into the product.  Thus, although it is unclear from this 

study which specific mechanism is responsible for compound binding, any organics the 

study revealed were exhibiting rejection based largely on affinity to the RO membrane 

should be treated with some caution with regard to the ability of the membranes to 

exclude them over longer periods of time (Schafer et. al., 2003). 

 

That “Universal” PA ANN flux models generally mirror performance of the individual 

PA models for a wide variety of compounds, may suggest commonness of mechanism 

with respect to compound-membrane interactions.  Providing the PA membranes selected 

for this study are fairly representative of the range of membrane chemistries defining the 

commercial market, the “Universal” models can serve as generic surrogates to predict the 

gross ability of a PA RO membrane to reject specific organic compounds. 
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It was noted that the CA models generally predicted poorer rejection performance than 

the PA models; however, this result may have been somewhat artifactual, as comparisons 

between the performance of the RMP assay and actual membrane performance in the 

block tester indicated that the RMP assay may have significantly underestimated CA 

rejection.  However, compounds exhibiting high rejection in the RMP assay are expected, 

for the most part, also to be rejected well in the field.   

4.1.8 Improving the ANN QSAR Models 

 

A number of gaps exist in the ANN models, presumably due to a lack of exemplars 

covering specific novel patterns of molecular properties that affect interactions between 

the compounds and RO membranes.  Although model failure frequency was somewhat 

dependent on the membrane being emulated, the ANN models were completely unable to 

predict 15 compounds, most notably many of the N-nitroso compounds.  In this case, the 

mechanism responsible for compound-membrane interactions were most likely 

significantly different from those exemplified by the surrogate compounds chosen for the 

study. 

 

One way to improve the predictive ability of the ANN models would be to include one or 

more of these compounds in the surrogate database and reconstruct the models de novo.  

The use of QSAR descriptors known to be related to compound-membrane interactions 

may greatly enhance the ability to detect appropriate surrogates in this case.  By taking an 

iterative approach from this point, the models may be developed in an “evolutionary” 

fashion, converging on a broadly predictive solution using a minimal set of exemplars.  

Future work would proceed in this direction. 

 

4.1.9 Extending QSAR ANN Model Results to the Real World 

 

Although some comparisons with laboratory and field data suggest that the predictions of 

these ANN models may have a good deal of merit, validation by more widespread 

comparisons between the model predictions and experience under field conditions is 

desirable.  It is hoped that dissemination of the ANN models as well as data presented in 
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this study (tables of predicted performance data for the 5 membranes used in the study, 

and also of the “Universal” models for PA) to agencies possessing or collecting specific 

information regarding removal of these compounds by RO membranes will aid in model 

validation. 

 

This study focused on fundamental relationships between several organic compounds of 

public health concern and several commercial RO membranes within the context of a 

simple experimental matrix.  Actual matrices defining commercial RO feed water are far 

more complex, and certainly are capable of modifying the behavior of organic 

compounds and RO membranes (Chen et. al., 1997; Koops et. al., 2001).  The 

temperature, pH, salinity and nature of the organic constituents in the feed may vary 

considerably from one plant location to another.  Moreover, throughout the length of an 

RO purification plant from the feed inlet to the brine outlet, concentration of salts and 

organics may increase as much as 5-fold, so that membranes in different locations of the 

plant are exposed to different feed conditions.  An understanding of how these changing 

conditions may modulate the interaction of organic compounds with the membranes 

would be a valuable modulation factor to include in membrane performance models.  

Future work is planned to help achieve this goal. 

 
4.2 Description of Compound-Membrane Interactions Using Molecular 

Dynamics (MD) Simulations 

 
Software has been successfully developed that automatically builds, geometry optimizes, 

analyzes, and stores fully-atomistic models of randomly crosslinked PA membranes 

using MPD and TMC monomers as building blocks.  The program allows control over all 

membrane structural parameters including the membrane mass, degree of intra-chain 

crosslinking, and the net membrane charge.  The program also provides the ability to 

automatically create a diverse population of PA membrane models whose properties vary 

incrementally or randomly over user-specified ranges.  The models can be used in studies 

of membrane structure and dynamics and to gain insight into theoretical motifs of solute 

transport and surface biomolecular fouling.   
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Compared to experimental data, the calculated fluxes of NDMA and PCE through a 

model PA membrane proportionally represented laboratory observations (NDMA > 

PCE), though absolute values were overestimated by several logs.  Short simulation times 

(200 ps) resulting in the inability to account for low-frequency solute jumps is likely to 

have contributed to the overestimation of compound diffusivities and fluxes.  In addition, 

the water-membrane partition coefficients for the organics, KA, which were derived from 

experimental data, were likely to have been overestimated as well, further compounding 

errors in the modeled diffusivities. 

 

In spite of the problems outlined above regarding calculations of absolute solute fluxes, a 

comparison of the relative diffusivities of the organic solutes in the pure-water and 

membrane simulations suggested that PCE interacts more strongly than NDMA with the 

hydrated PA membrane, a factor which should retard its mobility in the membrane and 

increase its rejection compared to NDMA.  In addition, both water and membrane atoms 

were found to generally associate more with NDMA than PCE.  The reduced hydration 

sphere around PCE may result in less shielding of long-range electrostatic interactions 

with membrane atoms leading to diminished mobility compared to NDMA.  

 

Future work, which may be carried out in collaboration with the recently established NSF 

“Center for Advanced Materials for Water Purification with Systems” at UIUC, could 

pursue several key issues that were not possible to address in this project.  Key objectives  

undertaken in such future work would include: 

 

1.  Implementation of MD simulations up to 10 nanoseconds (ns) with larger 

membrane systems to better document and quantify solute diffusion behaviors, 

such as jump frequencies and magnitudes, under a variety of conditions.  It is 

anticipated that a range of organic solutes would be explored in these studies 

along with a host of other variables, including the membrane density, degree of 

hydration, ion and pH effects, temperature, and pressure.   
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2.  Establishment of a predictive relationship between one or more organic 

molecular descriptors and KA, the equilibrium water-membrane partition 

coefficient.  Reliable estimates of KA are required to calculate solute fluxes in RO 

membranes from first principles.  An attempt could be made to correlate a limited 

number of experimental KA values with one or more easily determined molecular 

descriptors, such as LogP, solvation energies, or other parameters that can be 

readily computed from molecular simulations. 

 

3.   More detailed simulations and analyses of water interactions with the organic 

solutes and membrane atoms could be performed.  Similarly, more in-depth 

analyses of organic compound interactions with membrane atoms are also 

required.  Such interactions are critical to an explanation of differences in organic 

compound flux (and rejection) by RO membranes.  Moreover, greater insights 

into these processes will enable more accurate and reliable predictions of the 

transport behaviors of unknown trace organic compounds and facilitate the design 

of novel molecular architectures to enhance rejection.  
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Figure 1. Interaction of a Compound (Solute) with a Membrane  
A compound transported from the membrane surface from the feed can interact with the membrane in three different 
ways: it can adsorb or absorb into the membrane (M-Flux), it can pass entirely through the membrane into the product 
(P-Flux), or it can fail to interact with the membrane and remain in the feed (R-Flux). 
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Figure 2.  RMP Assay Diagram and Flux Determinations 
The radiolabeled compound consisted of either 14C or 3H isotope.  Radioactivity was measured using a scintillation counter.  
Feed activity of 100,000 to 1,000,000 DPM provided 2-4 logs of dynamic range (99 – 99.99% rejection). 
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Pressure Cell For Studying
Radiolabeled Compound

Rejection

Exploded View of Cell

Cell Mounted on
10x Pressure Multiplier

Unit
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Teflon O ring

Membrane Perf. Steel Plate

Teflon flat ring

Bottom
Feed Product

Figure 3.  Apparatus used for the RMP Assay Method
The assembled stainless steel pressure cell is shown at the top of the left panel and in the right panel attached to the 
lower part of the syringe housing.  A gas-tight syringe is used to generate the 150 psi of pressure needed to force 
water through the membrane.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 85 

 

B 

3 

2 

4 

1 

A 

5 
1 

2 

3 

4 

5 

Figure 4.  Cross-Flow Membrane Test Unit  
This unit is used for membrane preparation (hydration under pressure) and validation of the RMP Assay.  The assembled test 
unit is illustrated in (A) above and consists of a top plate (A1), bottom plate (A2), permeate tube with attached flexible 
tubing (A3), pressure gauge (A4) and a concentrate flow valve (A5).  The disassembled test unit is illustrated in (B) and 
consists of a stainless steel permeate carrier (B1), membrane material (B2), feed spacer (B3), feed flow channel (B4) and 
teflon shim/gasket (B5). 
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Figure 5.  Comparison of RMP Assay to Crossflow Block Tester Performance
A standard linear regression model was performed for each RO membrane used in the study.  
There was an overall agreement in the comparative behavior of the two systems.
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Figure 6.  Selection of Molecular Descriptor Inputs and Construction of Artificial Neural Network (ANN) Models 
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Figure 8a.  Surrogate Compound Fate in BW-30 Membrane
Compounds in Quadrant “A” are well rejected; they neither associate with the membrane nor they pass through it.  
Compounds in Quadrant “B” are poorly rejected and do not interact well with the membrane. Compounds in Quadrant 
“C” are initially well rejected; however, they strongly associate with the membrane, so their rejection is largely due to 
membrane uptake.  Numbers in the graph correspond to compounds listed in Figs. 8b and 8c.  
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ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
1 Alanine 1 4.84 13.62 81.54

2 Caffeine 1 14.07 17.86 68.07

3 Cysteine 1 12.61 17.78 69.61

4 Dichloroacetic Acid 1 7.83 16.48 75.70

5 Glycine 1 3.37 14.88 81.74

6 N-dimethylamine 1 6.88 34.73 58.38

7 Phenol 1 59.99 35.43 4.58

8 t Butyl Alcohol 1 7.11 18.40 74.48

9 Threonine 1 4.04 9.23 86.74

10 Valine 1 4.58 22.95 72.46

11 Ethylbenzene 2 96.45 3.55 0.00

12 Toluene 2 98.49 1.51 0.00

13 1,4 Dichlorophenoxyacetic Acid 3 5.99 13.26 80.76

14 2,3,4,5,6 Pentachlorophenol 3 53.42 0.43 46.15

15 4,6 Dichlorophenol 3 92.59 7.41 0.00

16 Nitrobenzene 3 99.62 0.38 0.00

17 Phthalic Anhydride 3 1.68 6.84 91.48

18 Trichloroacetic Acid 3 8.83 24.37 66.80

19 17a Estradiol 4 77.59 0.19 22.22

20 4 Nonylphenol 4 36.64 0.30 63.06

21 beta Sitostanol n Hydrate 4 28.93 0.47 70.59

22 Cholesterol 4 13.39 0.07 86.54

23 Codeine 4 13.11 9.43 77.46

24 Estrone 4 69.61 0.62 29.77

25 Testosterone 4 11.65 0.94 87.41

Figure 8b.  Surrogate Compound Fate in BW-30 Membrane
The ID number corresponds to numbers in Fig. 8a.  Relative P, M, R fluxes for surrogate compounds are shown.  
Cluster numbers indicate compounds with similar molecular properties based on QSAR molecular descriptors.  
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ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
26 Bisphenol 5 28.34 3.11 68.55

27 Diethylstilbestrol 5 37.33 0.09 62.58

28 2,4 Dinitrotoluene 6 94.94 5.06 0.00

29 methyl parathion 8 12.00 0.97 87.03

30 Progesterone 8 25.33 0.04 74.64

31 2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 9 5.20 0.42 94.38

32 Cimetidine 9 13.37 7.75 78.88

33 Diethylphthalate 9 37.02 6.81 56.16

34 Ibuprofen 9 18.36 16.15 65.49

35 Chlorpyrifos 10 25.68 0.81 73.50

36 Phenanthrene 12 99.71 0.28 0.00

37 1,1,2,2, Tetrachloroethylene (PCE) 13 99.95 0.05 0.00

38 Benzene 13 74.01 25.99 0.00

39 Lindane 13 66.26 2.36 31.38

40 Doxycycline 15 10.54 3.26 86.21

41 Tetracycline 15 7.69 3.43 88.88

42 Ciprofloxacin 16 2.67 2.08 95.24

43 Erythromycin 16 7.66 3.77 88.56

44 Ethylenediaminetetraacetic Acid (EDTA) 18 2.98 5.31 91.72

45 Asparagine N/A 2.37 6.93 90.70

46 Aspartic Acid N/A 5.54 12.60 81.86

47 Histidine N/A 6.22 16.17 77.61

48 Lysine N/A 3.11 14.04 82.85

49 Methionine N/A 7.93 24.13 67.94

50 N-nitroso dimethyl amine (NDMA) N/A 17.66 82.34 0.00

51 Urea N/A 1.40 89.37 9.23

Figure 8c.  Surrogate Compound Fate in BW-30 Membrane.  (Continued – See Fig. 8b)



 92 

ESPA-2 Membrane Compound Fate

51
50

4
5

371624
152811

12

3619

38

17
34

39
46 18 444781

104518

4340

13
2

41
42

22
31

6

49

262720 30
33

2529

32

14

23

21

7

39350

50

100
0 50 100

Relative Membrane Flux (M)

R
el

at
iv

e 
P

ro
d

u
ct

 F
lu

x 
(P

)

Increasing Membrane Association

In
cr

ea
si

ng
 R

ej
ec

tio
n A

B

C

Figure 9a.  Surrogate Compound Fate in ESPA-2 Membrane
Compounds in Quadrant “A” are well rejected; they neither associate with the membrane nor they pass through it.  
Compounds in Quadrant “B” are poorly rejected and do not interact well with the membrane. Compounds in Quadrant 
“C” are initially well rejected; however, they strongly associate with the membrane, so their rejection is largely due to 
membrane uptake.  Numbers in the graph correspond to compounds listed in Figs. 9b and 9c.  
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ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
1 Alanine 1 5.61 18.54 75.85

2 Caffeine 1 19.13 20.62 60.25

3 Cysteine 1 4.98 10.06 84.96

4 Dichloroacetic Acid 1 8.16 30.30 61.55

5 Glycine 1 4.57 26.92 68.52

6 N-dimethylamine 1 22.79 33.12 44.09

7 Phenol 1 63.34 30.36 6.30

8 t Butyl Alcohol 1 5.17 16.96 77.86

9 Threonine 1 3.57 11.80 84.62

10 Valine 1 8.78 21.48 69.74

11 Ethylbenzene 2 96.81 3.19 0.00

12 Toluene 2 91.63 8.37 0.00

13 1,4 Dichlorophenoxyacetic Acid 3 17.28 15.84 66.87

14 2,3,4,5,6 Pentachlorophenol 3 44.66 2.87 52.48

15 4,6 Dichlorophenol 3 97.35 2.65 0.00

16 Nitrobenzene 3 99.50 0.50 0.00

17 Phthalic Anhydride 3 3.05 8.02 88.93

18 Trichloroacetic Acid 3 6.90 23.32 69.78

19 17a Estradiol 4 85.93 1.65 12.42

20 4 Nonylphenol 4 21.02 0.33 78.65

21 beta Sitostanol n Hydrate 4 48.57 0.53 50.90

22 Cholesterol 4 17.87 0.06 82.06

23 Codeine 4 47.68 15.42 36.90

24 Estrone 4 99.78 0.22 0.00

25 Testosterone 4 27.93 2.34 69.73

Figure 9b.  Surrogate Compound Fate in ESPA-2 Membrane
The ID number corresponds to numbers in Fig. 9a.  Relative P, M, R fluxes for surrogate compounds are shown.  
Cluster numbers indicate compounds with similar molecular properties based on QSAR molecular descriptors.  
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ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
26 Bisphenol 5 25.50 1.88 72.62

27 Diethylstilbestrol 5 21.66 0.09 78.25

28 2,4 Dinitrotoluene 6 96.55 3.45 0.00

29 methyl parathion 8 28.17 1.54 70.29

30 Progesterone 8 34.21 0.25 65.54

31 2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 9 19.99 2.33 77.67

32 Cimetidine 9 34.06 19.61 46.33

33 Diethylphthalate 9 31.46 4.93 63.62

34 Ibuprofen 9 8.89 4.45 86.66

35 Chlorpyrifos 10 59.64 0.66 39.70

36 Phenanthrene 12 85.27 0.45 14.28

37 1,1,2,2, Tetrachloroethylene (PCE) 13 99.67 0.33 0.00

38 Benzene 13 76.68 23.32 0.00

39 Lindane 13 58.30 2.13 39.57

40 Doxycycline 15 14.46 4.37 81.17

41 Tetracycline 15 18.89 7.08 74.02

42 Ciprofloxacin 16 18.68 10.57 70.76

43 Erythromycin 16 13.32 3.86 82.82

44 Ethylenediaminetetraacetic Acid (EDTA) 18 9.07 14.29 76.64

45 Asparagine N/A 6.72 22.01 71.27

46 Aspartic Acid N/A 3.54 15.69 80.77

47 Histidine N/A 7.91 16.02 76.07

48 Lysine N/A 6.90 14.23 78.87

49 Methionine N/A 25.10 16.74 58.17

50 N-nitroso dimethyl amine (NDMA) N/A 14.08 80.76 5.16

51 Urea N/A 8.29 85.11 6.59

Figure 9c.  Surrogate Compound Fate in ESPA-2 Membrane.  (Continued – See Fig. 9b)
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Figure 10a.  Surrogate Compound Fate in LFC-1 Membrane
Compounds in Quadrant “A” are well rejected; they neither associate with the membrane nor they pass through it.  
Compounds in Quadrant “B” are poorly rejected and do not interact well with the membrane. Compounds in Quadrant 
“C” are initially well rejected; however, they strongly associate with the membrane, so their rejection is largely due to 
membrane uptake.  Numbers in the graph correspond to compounds listed in Figs. 10b and 10c.  
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ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
1 Alanine 1 5.77 15.45 78.77

2 Caffeine 1 21.78 14.62 63.61

3 Cysteine 1 5.77 15.45 78.77

4 Dichloroacetic Acid 1 7.12 23.43 69.45

5 Glycine 1 6.45 22.85 70.70

6 N-dimethylamine 1 28.80 31.30 39.90

7 Phenol 1 65.33 34.67 0.00

8 t Butyl Alcohol 1 6.18 25.89 67.93

9 Threonine 1 3.88 12.00 84.12

10 Valine 1 4.89 12.18 82.92

11 Ethylbenzene 2 98.09 1.91 0.00

12 Toluene 2 80.97 19.03 0.00

13 1,4 Dichlorophenoxyacetic Acid 3 3.92 4.76 91.32

14 2,3,4,5,6 Pentachlorophenol 3 60.72 0.69 38.59

15 4,6 Dichlorophenol 3 97.65 2.35 0.00

16 Nitrobenzene 3 99.71 0.29 0.00

17 Phthalic Anhydride 3 3.06 6.06 90.88

18 Trichloroacetic Acid 3 1.99 12.80 85.21

19 17a Estradiol 4 67.29 0.67 32.04

20 4 Nonylphenol 4 23.36 0.31 76.32

21 beta Sitostanol n Hydrate 4 14.30 0.47 85.23

22 Cholesterol 4 12.56 0.27 87.17

23 Codeine 4 38.88 12.07 49.06

24 Estrone 4 83.66 0.92 15.42

25 Testosterone 4 41.21 1.65 57.14

Figure 10b.  Surrogate Compound Fate in LFC-1 Membrane
The ID number corresponds to numbers in Fig. 10a.  Relative P, M, R fluxes for surrogate compounds are shown.  
Cluster numbers indicate compounds with similar molecular properties based on QSAR molecular descriptors.  
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ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
26 Bisphenol 5 16.12 1.08 82.80

27 Diethylstilbestrol 5 18.39 0.19 81.42

28 2,4 Dinitrotoluene 6 98.31 1.69 0.00

29 methyl parathion 8 23.85 1.32 74.82

30 Progesterone 8 23.25 0.03 76.73

32 Cimetidine 9 28.99 5.19 65.82

33 Diethylphthalate 9 29.88 5.48 64.65

34 Ibuprofen 9 8.62 5.20 86.18

35 Chlorpyrifos 10 21.23 1.08 77.70

36 Phenanthrene 12 99.34 0.66 0.00

37 1,1,2,2, Tetrachloroethylene (PCE) 13 99.93 0.07 0.00

38 Benzene 13 64.01 19.46 16.54

39 Lindane 13 37.32 1.07 61.61

40 Doxycycline 15 15.95 5.33 78.71

41 Tetracycline 15 17.59 3.52 78.89

42 Ciprofloxacin 16 30.45 7.61 61.94

43 Erythromycin 16 7.58 2.99 89.43

44 Ethylenediaminetetraacetic Acid (EDTA) 18 2.12 6.69 91.20

45 Asparagine N/A 7.41 12.01 80.58

46 Aspartic Acid N/A 2.81 9.68 87.52

47 Histidine N/A 7.98 17.34 74.68

48 Lysine N/A 2.35 6.21 91.44

49 Methionine N/A 4.14 10.25 85.60

50 N-nitroso dimethyl amine (NDMA) N/A 0.53 84.23 15.25

51 Urea N/A 1.66 95.48 2.86

Figure 10c.  Surrogate Compound Fate in LFC-1 Membrane.  (Continued – See Fig. 10b)
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TFC-HR Membrane Compound Fate
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Figure 11a.  Surrogate Compound Fate in TFC-HR Membrane
Compounds in Quadrant “A” are well rejected; they neither associate with the membrane nor they pass through it.  
Compounds in Quadrant “B” are poorly rejected and do not interact well with the membrane. Compounds in Quadrant 
“C” are initially well rejected; however, they strongly associate with the membrane, so their rejection is largely due to 
membrane uptake.  Numbers in the graph correspond to compounds listed in Figs. 11b and 11c.  
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ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
1 Alanine 1 4.16 10.20 85.64

2 Caffeine 1 17.38 14.78 67.84

3 Cysteine 1 5.68 7.02 87.30

4 Dichloroacetic Acid 1 8.78 25.82 65.41

5 Glycine 1 5.36 18.03 76.61

6 N-dimethylamine 1 7.89 28.58 63.53

7 Phenol 1 64.67 35.10 0.23

8 t Butyl Alcohol 1 10.10 23.94 65.95

9 Threonine 1 4.89 10.63 84.48

10 Valine 1 5.07 11.10 83.82

11 Ethylbenzene 2 98.39 1.61 0.00

12 Toluene 2 88.09 11.91 0.00

13 1,4 Dichlorophenoxyacetic Acid 3 9.60 5.97 84.43

14 2,3,4,5,6 Pentachlorophenol 3 68.69 5.08 26.23

15 4,6 Dichlorophenol 3 97.98 2.02 0.00

16 Nitrobenzene 3 99.64 0.36 0.00

17 Phthalic Anhydride 3 3.45 8.14 88.41

18 Trichloroacetic Acid 3 6.50 29.05 64.46

19 17a Estradiol 4 84.92 0.46 14.61

20 4 Nonylphenol 4 69.90 0.29 29.81

21 beta Sitostanol n Hydrate 4 24.75 0.43 74.82

22 Cholesterol 4 13.33 0.38 86.30

23 Codeine 4 16.76 7.66 75.59

24 Estrone 4 99.84 0.16 0.00

25 Testosterone 4 14.54 0.51 84.95

Figure 11b.  Surrogate Compound Fate in TFC-HR Membrane
The ID number corresponds to numbers in Fig. 11a.  Relative P, M, R fluxes for surrogate compounds are shown.  
Cluster numbers indicate compounds with similar molecular properties based on QSAR molecular descriptors.  
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ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
26 Bisphenol 5 24.01 0.60 75.39

27 Diethylstilbestrol 5 47.75 0.12 52.14

28 2,4 Dinitrotoluene 6 98.06 1.94 0.00

29 methyl parathion 8 25.57 3.52 70.91

30 Progesterone 8 33.90 0.04 66.06

31 2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 9 21.19 2.43 76.39

32 Cimetidine 9 26.06 13.96 59.98

33 Diethylphthalate 9 41.18 1.47 57.35

34 Ibuprofen 9 10.36 3.97 85.67

35 Chlorpyrifos 10 52.56 0.73 46.71

36 Phenanthrene 12 98.28 0.46 1.26

37 1,1,2,2, Tetrachloroethylene (PCE) 13 99.98 0.02 0.00

38 Benzene 13 78.59 21.41 0.00

39 Lindane 13 66.34 0.94 32.72

40 Doxycycline 15 16.74 10.24 73.03

41 Tetracycline 15 14.45 2.93 82.62

42 Ciprofloxacin 16 12.11 6.61 81.28

43 Erythromycin 16 9.85 2.53 87.61

44 Ethylenediaminetetraacetic Acid (EDTA) 18 2.03 11.10 86.87

45 Asparagine N/A 6.59 31.86 61.55

46 Aspartic Acid N/A 5.54 14.67 79.79

47 Histidine N/A 4.57 11.68 83.76

48 Lysine N/A 3.82 10.72 85.46

49 Methionine N/A 6.49 19.96 73.55

50 N-nitroso dimethyl amine (NDMA) N/A 21.33 78.67 0.00

51 Urea N/A 1.74 90.01 8.25

Figure 11c.  Surrogate Compound Fate in TFC-HR Membrane.  (Continued – See Fig. 11b)
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"Universal" PA Membrane Compound Fate
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Figure 12a.  Surrogate Compound Fate in “Universal” PA Membrane
Compounds in Quadrant “A” are well rejected; they neither associate with the membrane nor they pass through it.  
Compounds in Quadrant “B” are poorly rejected and do not interact well with the membrane. Compounds in Quadrant 
“C” are initially well rejected; however, they strongly associate with the membrane, so their rejection is largely due to 
membrane uptake.  Numbers in the graph correspond to compounds listed in Figs. 12b and 12c.  



 102

ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
1 Alanine 1 4.40 16.43 80.97

2 Caffeine 1 16.70 20.08 64.92

3 Cysteine 1 6.06 9.99 82.35

4 Dichloroacetic Acid 1 7.46 23.83 66.72

5 Glycine 1 3.93 33.98 86.59

6 N-dimethylamine 1 14.10 35.30 51.93

7 Phenol 1 65.52 31.55 3.93

8 t Butyl Alcohol 1 7.08 20.79 71.30

9 Threonine 1 4.86 10.38 82.90

10 Valine 1 6.39 16.93 76.44

11 Ethylbenzene 2 95.58 2.61 -4.95

12 Toluene 2 90.38 5.76 -4.88

13 1,4 Dichlorophenoxyacetic Acid 3 7.65 7.33 80.77

14 2,3,4,5,6 Pentachlorophenol 3 55.61 1.72 39.53

15 4,6 Dichlorophenol 3 97.88 3.30 -3.38

16 Nitrobenzene 3 97.53 0.37 -6.95

17 Phthalic Anhydride 3 2.90 7.53 89.95

18 Trichloroacetic Acid 3 5.51 22.09 73.92

19 17a Estradiol 4 88.30 0.58 24.93

20 4 Nonylphenol 4 33.54 0.45 68.02

21 beta Sitostanol n Hydrate 4 18.84 0.54 70.10

22 Cholesterol 4 25.86 9.39 85.63

23 Codeine 4 28.03 11.13 61.67

24 Estrone 4 77.69 0.42 32.56

25 Testosterone 4 20.57 1.04 75.39

Figure 12b.  Surrogate Compound Fate in “Universal” PA Membrane
The ID number corresponds to numbers in Fig. 12a.  Relative P, M, R fluxes for surrogate compounds are shown.  
Cluster numbers indicate compounds with similar molecular properties based on QSAR molecular descriptors.  
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ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
26 Bisphenol 5 21.31 1.18 74.46

27 Diethylstilbestrol 5 27.74 0.14 69.13

28 2,4 Dinitrotoluene 6 98.89 2.76 -2.48

29 methyl parathion 8 20.55 1.45 78.87

30 Progesterone 8 28.97 0.21 70.12

31 2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 9 14.15 1.51 85.37

32 Cimetidine 9 11.68 6.24 67.54

33 Diethylphthalate 9 32.62 4.88 61.30

34 Ibuprofen 9 9.92 5.07 82.17

35 Chlorpyrifos 10 19.07 0.21 62.81

36 Phenanthrene 12 94.79 0.47 7.52

37 1,1,2,2, Tetrachloroethylene (PCE) 13 95.55 0.12 -3.28

38 Benzene 13 74.11 20.79 8.13

39 Lindane 13 49.52 1.51 47.32

40 Doxycycline 15 14.48 5.08 78.59

41 Tetracycline 15 14.16 3.40 83.29

42 Ciprofloxacin 16 41.47 0.71 80.62

43 Erythromycin 16 9.15 3.33 88.25

44 Ethylenediaminetetraacetic Acid (EDTA) 18 3.56 8.77 85.89

45 Asparagine N/A 3.78 12.98 79.02

46 Aspartic Acid N/A 5.04 13.22 80.64

47 Histidine N/A 6.98 14.13 78.75

48 Lysine N/A 3.88 10.41 84.69

49 Methionine N/A 6.01 12.22 75.75

50 N-nitroso dimethyl amine (NDMA) N/A 12.02 67.55 3.63

51 Urea N/A 2.21 75.25 4.50

Figure 12c.  Surrogate Compound Fate in “Universal” PA Membrane.  (Continued – See Fig. 12b)
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CA Membrane Compound Fate
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Figure 13a.  Surrogate Compound Fate in CA Membrane
Compounds in Quadrant “A” are well rejected; they neither associate with the membrane nor they pass through it.  
Compounds in Quadrant “B” are poorly rejected and do not interact well with the membrane. Compounds in Quadrant 
“C” are initially well rejected; however, they strongly associate with the membrane, so their rejection is largely due to 
membrane uptake.  Numbers in the graph correspond to compounds listed in Figs. 13b and 13c.  
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ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
1 Alanine 1 6.78 53.89 39.33

2 Caffeine 1 10.09 75.53 14.37

3 Cysteine 1 9.37 43.88 46.75

4 Dichloroacetic Acid 1 6.23 41.26 52.51

5 Glycine 1 6.72 56.36 36.92

6 N-dimethylamine 1 13.25 54.91 31.84

7 Phenol 1 28.33 71.67 0.00

8 t Butyl Alcohol 1 4.04 87.42 8.53

9 Threonine 1 7.52 45.73 46.75

10 Valine 1 5.64 62.72 31.64

11 Ethylbenzene 2 66.72 24.15 9.13

12 Toluene 2 52.21 47.79 0.00

13 1,4 Dichlorophenoxyacetic Acid 3 5.30 43.74 50.96

14 2,3,4,5,6 Pentachlorophenol 3 97.77 2.23 0.00

15 4,6 Dichlorophenol 3 97.56 2.44 0.00

16 Nitrobenzene 3 65.54 34.46 0.00

17 Phthalic Anhydride 3 6.22 29.08 64.70

18 Trichloroacetic Acid 3 4.19 60.12 35.70

19 17a Estradiol 4 97.52 2.48 0.00

20 4 Nonylphenol 4 95.98 0.73 3.29

21 beta Sitostanol n Hydrate 4 28.23 0.67 71.10

22 Cholesterol 4 16.48 0.25 83.27

23 Codeine 4 26.16 57.34 16.50

24 Estrone 4 97.32 2.68 0.00

25 Testosterone 4 74.38 20.97 4.65

Figure 13b.  Surrogate Compound Fate in CA Membrane
The ID number corresponds to numbers in Fig. 13a.  Relative P, M, R fluxes for surrogate compounds are shown.  
Cluster numbers indicate compounds with similar molecular properties based on QSAR molecular descriptors.  
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ID Number Compound QSAR Cluster M-Flux P-Flux R-Flux
26 Bisphenol 5 99.11 0.89 0.00

27 Diethylstilbestrol 5 99.74 0.26 0.00

28 2,4 Dinitrotoluene 6 92.94 7.06 0.00

29 methyl parathion 8 97.82 2.18 0.00

30 Progesterone 8 98.51 1.49 0.00

32 Cimetidine 9 21.67 59.89 18.44

33 Diethylphthalate 9 83.52 16.48 0.00

34 Ibuprofen 9 20.45 57.98 21.57

35 Chlorpyrifos 10 97.09 2.91 0.00

36 Phenanthrene 12 99.57 0.43 0.00

37 1,1,2,2, Tetrachloroethylene (PCE) 13 67.77 30.80 1.44

38 Benzene 13 43.42 56.58 0.00

39 Lindane 13 98.48 1.52 0.00

40 Doxycycline 15 30.61 18.03 51.36

41 Tetracycline 15 14.42 32.26 53.32

42 Ciprofloxacin 16 27.03 35.12 37.85

43 Erythromycin 16 8.28 28.32 63.41

44 Ethylenediaminetetraacetic Acid (EDTA) 18 7.52 48.06 44.42

45 Asparagine N/A 0.73 64.97 34.30

46 Aspartic Acid N/A 8.48 34.23 57.29

47 Histidine N/A 8.82 45.29 45.89

48 Lysine N/A 9.30 51.85 38.85

49 Methionine N/A 8.58 46.93 44.49

50 N-nitroso dimethyl amine (NDMA) N/A 3.51 94.06 2.44

51 Urea N/A 3.08 90.58 6.34

Figure 13c.  Surrogate Compound Fate in CA Membrane.  (Continued – See Fig. 13b)
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Norm P Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9821 2.3256 4.0927 8.0013 255

Train 0.9829 2.3317 4.1521 8.1379 178
Test 0.9805 2.3114 3.9518 7.8298 77

               Sensitivity Index
Ovality xvpc4 Py LogP SsCH3 numHBa
-0.1699 -0.7242 0.2610 -0.0119 0.6658 1.3186
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Figure 14a.  ANN Model Results for BW-30 – P-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm. M Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9839 3.6830 5.9178 11.5696 255

Train 0.9860 3.4998 5.5314 10.8412 178
Test 0.9793 4.1064 6.7266 13.3277 77

BW30 M-Flux ANN Model
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               Sensitivity Index
P LogP Gmax Gmin

-0.6355 0.3669 0.0131 0.7941

Figure 14b.  ANN Model Results for BW-30 – M-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.



 109

Norm R Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9608 6.0026 9.4015 18.3803 255

Train 0.9569 6.2819 9.9020 19.4073 178
Test 0.9705 5.3567 8.1272 16.1028 77

               Sensitivity Index
Pz Wt LogP Gmin

-0.4680 -6.1063 -1.0190 -2.1272
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Figure 14c.  ANN Model Results for BW-30 – R-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the 
mean based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error 
between predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval 
(95%)=Represents 95% confidence interval, Records=Represents number of exemplars used.  The sensitivity index 
lists the inputs to the model and indicates how sensitive the model output is to small changes in each input.
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Norm P Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9644 2.8041 4.7706 9.3254 261

Train 0.9704 2.6084 4.3232 8.4717 182
Test 0.9521 3.2551 5.6683 11.2254 79

ESPA2 P-Flux ANN Model
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               Sensitivity Index
MaxQp xvpc4 Iy Py LogP SsCH3 Hmin numHBa
-0.3767 -0.4996 -1.0265 0.1432 -0.3241 0.1174 0.3817 0.3934

Figure 15a.  ANN Model Results for ESPA-2 – P-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the 
mean based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error 
between predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval 
(95%)=Represents 95% confidence interval, Records=Represents number of exemplars used.  The sensitivity index 
lists the inputs to the model and indicates how sensitive the model output is to small changes in each input.
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Norm. M Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9853 3.8561 5.5805 10.9087 261

Train 0.9860 3.8111 5.4474 10.6747 182
Test 0.9838 3.9597 5.8756 11.6360 79

ESPA2 M-Flux ANN Model

-20

0

20

40

60

80

100

0 20 40 60 80 100

Prediction

A
ct

u
al

                                Sensitivity Index
P k1 SdssC Gmin fw numHBa Qs

-0.2011 -1.6738 -0.3071 0.5616 1.2028 0.2102 1.3982

Figure 15b.  ANN Model Results for ESPA-2 – M-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the 
mean based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error 
between predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval 
(95%)=Represents 95% confidence interval, Records=Represents number of exemplars used.  The sensitivity index 
lists the inputs to the model and indicates how sensitive the model output is to small changes in each input.
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Norm R Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9791 4.9779 6.3888 12.4887 261

Train 0.9824 4.5969 5.8686 11.4999 182
Test 0.9729 5.8556 7.4503 14.7544 79

                                Sensitivity Index
MaxNeg nxch6 Q k2 Gmax Gmin numHBa
0.0384 0.2095 -1.6123 0.3314 -0.5237 -2.1458 -1.4751
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Figure 15c.  ANN Model Results for ESPA-2 – R-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm P Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9914 1.7375 2.9206 5.7102 252

Train 0.9913 1.7245 2.9384 5.7596 176
Test 0.9918 1.7675 2.8789 5.7055 76

                                              Sensitivity Index
Iy Py LogP SdssC

0.4935 0.7729 -0.3455 -0.0801
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Figure 16a.  ANN Model Results for LFC-1 – P-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm. M Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9887 3.0407 4.9548 9.6876 252

Train 0.9926 2.7627 4.1714 8.1765 176
Test 0.9807 3.6845 6.4115 12.7066 76
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                                              Sensitivity Index
MaxQp P Q SaaCH SdssC Gmin idcbar fw numHBa Qs
2.1870 -0.6448 0.4650 0.4792 -0.3696 1.3010 -1.2797 0.6555 0.7628 1.9183

Figure 16b.  ANN Model Results for LFC-1 – M-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm R Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9879 3.5841 5.1401 10.0498 252

Train 0.9897 3.5236 4.7465 9.3037 176
Test 0.9841 3.7242 5.9525 11.7969 76
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                                  Sensitivity Index
nxch6 Q sumdelI k2 SdssC Gmin numHBa
0.8560 -0.3335 -0.3209 1.5810 -3.1102 -0.3399 -0.6827

Figure 16c.  ANN Model Results for LFC-1 – R-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm P Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9691 2.6487 4.4316 8.6630 260

Train 0.9713 2.5938 4.4266 8.6746 181
Test 0.9667 2.7745 4.4430 8.7989 79
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                                  Sensitivity Index
MaxQp xvpc4 nxp5 P Hmin fw numHBa
-1.5199 0.3931 0.0100 0.6744 0.2301 -0.5962 0.2296

Figure 17a.  ANN Model Results for TFC-HR – P-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm. M Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9844 3.7152 6.0456 11.8181 260

Train 0.9891 3.3200 5.0634 9.9226 181
Test 0.9736 4.6208 7.8452 15.5365 79
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                                  Sensitivity Index
P LogP SaaCH Gmin numHBa

0.4421 -0.1036 3.3047 1.5067 0.1772

Figure 17b.  ANN Model Results for TFC-HR – M-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm R Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9803 4.5211 6.5732 12.8495 260

Train 0.9818 4.2638 6.3169 12.3789 181
Test 0.9769 5.1107 7.1259 14.1121 79

TFC-HR R-Flux ANN Model

-20

0

20

40

60

80

100

0 20 40 60 80 100

Predicted

A
ct

u
al

                                                 Sensitivity Index
Py Q LogP SaaCH SdssC SdO Gmax Gmin idcbar numHBa

-0.8254 -1.6494 -0.5547 -2.7032 -0.4940 0.0280 0.0117 -1.3812 1.3378 -1.4252

Figure 17c.  ANN Model Results for TFC-HR – R-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm P Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9853 3.0996 4.6515 9.0943 253

Train 0.9858 3.0948 4.5760 8.9690 177
Test 0.9842 3.1107 4.8229 9.5582 76

                                                 Sensitivity Index
Surface xpc4 xv1 P LogP SdssC numHBa Qsv
-0.6895 0.4585 -1.4028 1.0620 -0.9874 -0.6083 0.0015 0.7710
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Figure 18a.  ANN Model Results for CA – P-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm. M Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9900 2.4784 5.4600 10.6748 254

Train 0.9883 2.5333 5.9050 11.5740 177
Test 0.9939 2.3520 4.2644 8.4493 77
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                                                 Sensitivity Index
P Q LogP SdssC

2.0098 0.9829 1.2532 1.2304

Figure 18b.  ANN Model Results for CA – M-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm R Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9435 5.4438 8.2063 16.0441 254

Train 0.9427 5.4063 8.2350 16.1408 177
Test 0.9464 5.5302 8.1400 16.1282 77
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                                  Sensitivity Index
ABSQ Q sumdelI SaaCH SdssC
0.7603 -0.8255 -0.2971 -0.3784 -0.7532

Figure 18c.  ANN Model Results for CA – R-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm P Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9617 3.3033 5.6340 10.9670 1028

Train 0.9644 3.1853 5.5692 10.8476 719
Test 0.9559 3.5779 5.7818 11.2923 309

"Universal" PA P-Flux ANN Model
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                                               Sensitivity Index
Average Surface xvpc4 Py LogP SsCH3 SdssC Hmin
NetOut01 -0.1755 -0.6933 -0.0110 -0.2393 0.1387 -0.0178 0.2539

Figure 19a.  ANN Model Results for “Universal” PA – P-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 
95% confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the 
model and indicates how sensitive the model output is to small changes in each input.
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Norm. M Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9646 5.6114 8.8493 17.2259 1027

Train 0.9634 5.6258 8.9931 17.5167 718
Test 0.9674 5.5779 8.5057 16.6123 309

"Universal" PA M-Flux ANN Model
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                                               Sensitivity Index
Average Surface xvpc4 Py LogP SsCH3 SdssC Hmin
NetOut01 -0.1755 -0.6933 -0.0110 -0.2393 0.1387 -0.0178 0.2539

Figure 19b.  ANN Model Results for “Universal” PA – M-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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Norm R Flux (%) R Avg. Abs. RMS Conf. Interval (95%) Records
All 0.9487 7.7847 10.4720 20.3846 1029

Train 0.9463 7.8690 10.7083 20.8573 720
Test 0.9543 7.5883 9.8997 19.3348 309
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-20

0

20

40

60

80

100

0 20 40 60 80 100

Predicted
A

ct
u

al

                                                             Sensitivity Index
Q Wt k3 LogP Gmax Gmin numHBa

-1.2360 22.6983 -0.0397 -0.6264 -0.4501 -0.0899 -0.8011

Figure 19c.  ANN Model Results for “Universal” PA – R-Flux
The graph shows the accuracy of prediction.  The overall R values are high and there is a good agreement between the 
test and the train values.  The line indicates a perfect model. The bar represents one standard deviation above the mean 
based on n=4-7.    R=Linear correlation between predicted and actual, Avg.Abs.=Average absolute error between 
predicted and actual, RMS=mean root square error between predicted and actual, Conf.Interval (95%)=Represents 95% 
confidence interval, Records=Represents number of exemplars used.  The sensitivity index lists the inputs to the model 
and indicates how sensitive the model output is to small changes in each input.
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“Universal” PA and BW-30 Model Comparison
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Figure 20a.  Comparison of “Universal” PA Model Output to BW-30 – P-Flux
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal”
PA model.  The “Universal” PA model agrees reasonably well with the BW-30 model.
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“Universal” PA and BW-30 Model Comparison
M-flux
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Figure 20b.  Comparison of “Universal” PA Model Output to BW-30 – M-Flux
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal”
PA model.  The “Universal” PA model agrees reasonably well with the BW-30 model.
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“Universal” PA and BW-30 Model Comparison
R-Flux
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Figure 20c.  Comparison of “Universal” PA Model Output to BW-30 – R-Flux
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal”
PA model.  The “Universal” PA model agrees reasonably well with the BW-30 model.
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“Universal” PA and ESPA-2 Model Comparison
P-Flux
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Figure 21a.  Comparison of “Universal” PA Model Output to ESPA-2 – P-Flux
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal”
PA model.  The “Universal” PA model agrees reasonably well with the ESPA-2 model.
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“Universal” PA and ESPA-2 Model Comparison 
M-Flux 

Figure 21b.  Comparison of “Universal” PA Model Output to ESPA-2 – M-Flux 
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal” 
PA model.  The “Universal” PA model agrees reasonably well with the ESPA-2 model. 
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“Universal” PA and ESPA-2 Model Comparison
R-Flux
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Figure 21c.  Comparison of “Universal” PA Model Output to ESPA-2 – R-Flux
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal”
PA model.  The “Universal” PA model agrees reasonably well with the ESPA-2 model.
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“Universal” PA and LFC-1 Model Comparison
P-Flux
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Figure 22a.  Comparison of “Universal” PA Model Output to LFC-1 – P-Flux
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal”
PA model.  The “Universal” PA model agrees reasonably well with the LFC-1 model.
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“Universal” PA and LFC-1 Model Comparison
M-Flux
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Figure 22b.  Comparison of “Universal” PA Model Output to LFC-1 – M-Flux
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal”
PA model.  The “Universal” PA model agrees reasonably well with the LFC-1 model.
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“Universal” PA and LFC-1 Model Comparison
R-Flux
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Figure 22c.  Comparison of “Universal” PA Model Output to LFC-1 – R-Flux
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal”
PA model.  The “Universal” PA model agrees reasonably well with the LFC-1 model.
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“Universal” PA and TFC-HR Model Comparison
P-Flux
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Figure 23a.  Comparison of “Universal” PA Model Output to TFC-HR – P-Flux
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal”
PA model.  The “Universal” PA model agrees reasonably well with the TFC-HR model.
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“Universal” PA and TFC-HR Model Comparison
M-Flux
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Figure 23b.  Comparison of “Universal” PA Model Output to TFC-HR – M-Flux
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal”
PA model.  The “Universal” PA model agrees reasonably well with the TFC-HR model.
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“Universal” PA and TFC-HR Model Comparison
R-Flux
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Figure 23c.  Comparison of “Universal” PA Model Output to TFC-HR – R-Flux
The closed circles represent the specific PA membrane model and the opened circles represent the “Universal”
PA model.  The “Universal” PA model agrees reasonably well with the TFC-HR model.
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Model Failure vs Representation of Surrogates in QSAR 
Descriptor Clusters
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Figure 24.  Model Failure vs Representation of Surrogates in QSAR Descriptor Clusters
This figure shows the relationship between the percentage of the cluster compounds represented by surrogate 
compounds and the percentage of compounds in each QSAR descriptor cluster that failed model prediction.   Each 
QSAR descriptor cluster is indicated on the chart by numbers.  
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Figure 26.  QSAR Molecular Descriptors Relating to Compound Transport 
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Figure 27.   Atomic force microscope image of a polyamide TFC membrane showing rough feedwater surface. (Image courtesy of J Safarik, 
Orange County Water District). 
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Figure 28.  Transmission electron micrograph of an experimental polyamide TFC membrane showing spatial asymmetry and 
structural heterogeneity.  Image courtesy of R. Riley, Separation Systems Technology.   
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Figure 29.  Screen capture of membrane build software.  Note provisions for setting the degree of membrane crosslinking. 
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Figure 30.  Main steps used in building crosslinked PA membrane models.  NN = nearest neighbor. 
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Figure 31 .  Schematic illustrating the role of internal crosslinks in establishing membrane "pores" or void spaces. 
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Figure 32.  A PA membrane model before and after geometry optimization using the AMBER force field. 
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Figure 33.  Model properties and atom partial charges for NDMA and PCE (mislabeled TCE in figure).  
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Figure 34.  Structure of the FT30 membrane model before and after imposing periodic boundary conditions. 



 148Figure 35.  Compacted membrane with water removed. NDMA=dark gray; polymer=light gray. 
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Figure 36.  System potential energy and temperature for the NDMA simulation. 
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Figure 37.  Three-axis plot showing trajectory of NDMA in membrane system between 15 and 35 ps. 
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Figure 38.  COM distances from the origin at t=0 ps for NDMA and PCE (mislabeled TCE in figure).  Note that 
NDMA underwent two “jumps”, a outbound jump beginning at about 20 ps and a return (inbound) jump at about 30 
ps. 
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Figure 39.  Schematic illustrating the concept of diffusional jumps or hops.  A separate "diffusion coefficient" 
may be computed based on jump magnitude and frequency while ignoring local free diffusion. 
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Figure 40.  Calculated diffusion coefficients for five randomly chosen water molecules and NDMA. 
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Figure 41.  Schematic showing method for estimating the energy of association ("interaction energy") of the organic 
solute with the membrane-water complex. 
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Figure 42.  Estimated energies of interaction (binding energies) of NDMA and PCE (mislabeled TCE in 
figure) within the hydrated membrane system. 



 156Figure 43.  NDMA and PCE (mislabeled TCE in figure) interactions with water and membrane atoms.  
Distances are in Å. 
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                     Figure 44.  Idealized model PA membrane pores. 
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Figure 45.  Solute-membrane interaction potentials (Relative Boltzman Factors) as a function of compound type and measured 
solute-membrane binding activity.  
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QSAR Cluster Compound Compound Properties
1 1,1 Dichloropropanone Disinfection Byproduct
1 3-amino-1H-1,2,4 Triazole Endocrine Disruptor
1 Alanine Amino Acid
1 benzo-e-1,3,2 Dioxathiepin-3-oxide Endocrine Disruptor
1 Bromochloroacetic Acid Disinfection Byproduct
1 Bromochloroacetonitrile Disinfection Byproduct
1 Caffeine Pharmaceutical-Human Drug
1 Chloralhydrate Disinfection Byproduct
1 Cyclotrimethylenetrinitramine Carcinogen
1 Cysteine Amino Acid
1 Dibromoacetatic Acid Disinfection Byproduct
1 Dibromoacetonitrile Disinfection Byproduct
1 Dichloroacetic Acid Disinfection Byproduct
1 Dichloroacetonitrile Disinfection Byproduct
1 Dichlorodif luoromethane Refrigerant Gas
1 Dichloropropane Chemical intermediate of perchloroethylene and other chlorinated chemicals
1 Glycine Amino Acid
1 Leucine Amino Acid
1 Metformin Pharmaceutical-Human Drug
1 N-Dimethylamine used as a raw  material of solvent /used to make organic chemicals
1 Nitrosodiethylamine Carcinogen
1 N-nitrosomorpholine Carcinogen
1 N-nitrosopiperidine Carcinogen
1 N-nitrosopyrrolidine Carcinogen
1 o-Cresol Intermediate for production of pesticides, pharmaceuticals
1 Paraxanthine Caffeine metabolite
1 p-Cresol Wood preservative-Industrial/Household w astew ater product
1 Phenol Disinfectant-Industrial/Household w astew ater product
1 s-1-Methyl-5-3-Pyridinyl-2-Pyrrolidinone
1 Serine Amino Acid
1 t Butyl Alcohol Alcohol
1 Threonine Amino Acid
1 Valine Amino Acid
2 1,1,2 Trichloroethene (TCE) Solvent/Carcinogen
2 1,2 Dichlorobenzene Fumigant
2 1,2 Dimethylbenzene Fuel Hydrocarbon-Carcinogen

Table 1a.  Description of Compounds Considered in the Study
The table shows a comprehensive list of 202 compounds, mostly obtained from the USGS Toxic Substances 
Hydrology (Toxics) Program, USEPA Drinking Water Contaminant Candidate List (March, 1995), USEPA 
Unregulated Contaminant Monitoring Rule (April, 1999), California Department of Health Services (May, 
2001).  “QSAR clusters” represent grouping of compounds based on their molecular descriptors.
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QSAR Cluster Compound Compound Properties
2 1,2,4 Trimethylbenzene Fuel Hydrocarbon
2 1,3,5 Trimethylbenzene Fuel Hydrocarbon
2 1,4 Dichlorobenzene Fumigant-Carcinogen/Industrial-Household w astew ater product
2 3,4,5,6,7,8,8a-Heptachlorodicyclopentadiene Endocrine Disruptor
2 5-methyl-1H-Benzotriazole Antioxidant-Industrial/Household w astew ater product
2 Bromochloromethane Disinfection Byproduct
2 Bromodichloromethane Disinfection Byproduct
2 Bromoform Disinfection Byproduct-Carcinogen
2 Bromomethane Fumigant/Solvent
2 Chloroform Disinfection Byproduct-Carcinogen
2 Cymene Manufacture of synthetic resins
2 Dibromochloromethane Disinfection Byproduct
2 Dibromochloropropane Carcinogen
2 Ethylbenzene Fuel Hydrocarbon
2 exo-Dimethanonaphthalene Endocrine Disruptor
2 Methylene Bromide Solvent; intermediate in production of herbicides
2 Methylene Chloride Solvent/found in aerosol and pesticide products, photographic f ilm
2 Monobromobenzene Solvent
2 p-Dichlorobenzene Carcinogen
2 Toluene Fuel Hydrocarbon-Carcinogen
3 1,4 Dichlorophenoxyacetic Acid Endocrine Disruptor
3 2,3 Naphthalenedicarboxylic Acid Plasticizer
3 2,3,4,5,6 Pentachlorophenol Endocrine Disruptor
3 2,3,5,6 Tetrachloroterephthalic Acid Herbicide 
3 2,4 Dichloro-4'-nitrodiphenyl Ether Endocrine Disruptor
3 2,4 Dinitrophenol Released from mines, metals, petroleum and dye plants
3 2,4,5 Trichlorophenoxyacetic Acid Endocrine Disruptor
3 2,6 Naphthalenedicarboxylic Acid Manufacture polyethylenenaphthalate and polyethylenephthalate polymers
3 4,6 Dichlorophenol Algicide, antihelmintic, bactericide, agricultural fungicide
3 Acetaminophen Pharmaceutical-Analgesic-Human Drug
3 Dichlorodiphenyldichloroethylene Pesticide-Carcinogen
3 Nitrobenzene production of aniline, used to make drugs, dyes, herbicides
3 Phthalic Anhydride Plasticizer-Industrial/Household w astew ater product
3 Trichloroacetic Acid Disinfection Byproduct
3 Triclosan Antimicrobial-Industrial/Household w astew ater product
4 17a Estradiol Pharmaceutical-Estrogen-Sex/Steroid hormone
4 4 Nonylphenol Surfactant/Wastew ater product-Endocrine Disruptor
4 Androsterone Pharmaceutical-Sex/Steroid hormone
4 beta Sitostanol n Hydrate Plant Sterol-Endocrine Disruptor
4 beta-Estradiol Pharmaceutical-Estrogen-Sex/Steroid hormone
4 Cholesterol Pharmaceutical-Sex/Steroid hormone-Fecal indicator

Table 1b.  Description of Compounds Considered in the Study
(Continued – See Table 1a)
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QSAR Cluster Compound Compound Properties
4 Codeine Pharmaceutical-Human Drug
4 Digoxigenin Pharmaceutical-Human Drug
4 Equilenin Pharmaceutical-Sex/Steroid hormone
4 Equilin Pharmaceutical-Sex/Steroid hormone
4 Estrone Pharmaceutical-Sex/Steroid hormone
4 Mestranol Pharmaceutical-Sex/Steroid hormone
4 Norethindrone Form of progesterone
4 Testosterone Pharmaceutical-Sex/Steroid hormone
5 2,2 bis-p-Chlorophenyl 1,1,1 Trichloroethane Endocrine Disruptor
5 2,2 bis-p-Methoxyphenyl 1,1,1 Trichloroethane Endocrine Disruptor
5 2,2,2 Trichloro 1,1-bis-4-chlorophenyl Ethanol Endocrine Disruptor
5 2,2-bis-p-Chlorophenyl 1,1 Dichloroethane Endocrine Disruptor
5 Bisphenol Oestrogenic/Antiandrogen-Household/Wastew ater product
5 Diethylstilbestrol Pharmaceutical-Estrogen-Carcinogen
6 2,4 Dinitrotoluene Production of isocyanate and explosives-Carcinogen
6 d--n-Butylphthalate Plasticizer
6 Estriol Pharmaceutical-Sex/Steroid hormone
6 Thio-N-methyl-carbamoyl-oxy-methylester Endocrine Disruptor
7 2,6 bis-1,1 Dimethylethyl 2,5 Cyclohexadiene 1,4 dione
7 2,6 bis-1,1 Dimethylethyl Phenol Intermediate for preparation of antioxidants and UV stabilizers
7 2,6 di-tert-butyl-p-Cresol Antioxidant/Antiskimming agent
7 ethyl-tert-Butyl Ether Fuel oxygenate-Carcinogen
7 methyl-tert-butyl Ether (MTBE) Fuel Hydrocarbon-Carcinogen
7 tert amyl methyl Ether Solvent
8 2,6 Dinitrotoluene Production of polyurethane foams; ammunition and explosives
8 methyl Parathion Insecticide
8 Progesterone Pharmaceutical-Sex/Steroid hormone
9 2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) Endocrine Disruptor
9 3-Hydroxycarbofuran Pesticide
9 4-amino-6-tert-butyl-3-methylthio-as-triazin-5,4H-one Endocrine Disruptor
9 6-chloro-N-ethyl-N'-isopropyl-1,3,5 Triazine-2,4-diamine Endocrine Disruptor
9 Acetochlor Herbicide
9 alpha-naphthyl-N-Methylcarbamate Endocrine Disruptor
9 Atrazine Carcinogen
9 Butylated-Hydroxyanisole Antioxidant-Industrial/Household w astew ater product
9 Carbadox Pharmaceutical-Human/Veterinary Antibiotic
9 Cimetidine Pharmaceutical-Human Drug
9 Diethylphthalate Plasticizer-Industrial/Household w astew ater product
9 Dipropylthiocarbamic Acid-s-ethylester
9 Diuron Herbicide
9 Fluoxetine Pharmaceutical-Human Drug

Table 1c.  Description of Compounds Considered in the Study
(Continued – See Table 1b)
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QSAR Cluster Compound Compound Properties
9 Fonofos Insecticide
9 Gemfibrozil Pharmaceutical-Human Drug
9 Ibuprofen Pharmaceutical-Human Drug
9 Linuron Herbicide
9 Metolachlor Pesticide
9 Metribuzin Pesticide
9 Molinate Herbicide
9 N N diethyl 3 methylbenzamide Insecticide
9 Nitrosodibutylamine Carcinogen
9 N-nitrosodi-n-butylamine Carcinogen
9 N-nitrosodi-n-propylamine Carcinogen
9 Paroxetine Pharmaceutical-Human Drug
9 Pramitol Herbicide
9 Salbutamol Pharmaceutical-Human Drug
9 Simazine Carcinogen
9 Terbacil Herbicide
9 Trimethoprim Pharmaceutical-Human/Veterinary Antibiotic
10 Aldicarbsulfone Agricultural product residue
10 Clorpyrifos Insecticide-Industrial/Household w astew ater product
10 Diazinon Insecticide
10 Disulfoton Insecticide
10 Endosulfansulfate Pesticide
10 Terbufos Insecticide
10 triphenyl Phosphate Plasticizer-Industrial/Household w astew ater product
10 tris 2 Chloroethyl Phosphate Plasticizer/Flame retardant-Industrial/Household w astew ater product
11 Aldrin Insecticide
11 cis-Chlordane Insecticide
11 Dieldrin Insecticide-Industrial/Household w astew ater product
11 Hexachloropentadiene Endocrine Disruptor
11 Octachloro-4-7-methanotetrahydroindane Endocrine Disruptor
11 Octachloroepoxide Endocrine Disruptor
12 Anthracene Polycyclic aromatic Hydrocarbon
12 benzo-a-Pyrene Polycyclic aromatic Hydrocarbon
12 Fluoranthrene Polycyclic aromatic Hydrocarbon
12 Phenanthrene Polycyclic aromatic Hydrocarbon
12 Pyrene Polycyclic aromatic Hydrocarbon
13 1,1,2,2 Tetrachloroethane Solvent
13 1,1,2,2, Tetrachloroethylene (PCE) Industrial Solvent
13 Benzene Fuel Hydrocarbon-Carcinogen
13 Hexachlorobenzene Endocrine Disruptor
13 Hexachlorobutadiene Used to make rubber compounds/solvent
13 Hexachlorocyclohexane Carcinogen

Table 1d.  Description of Compounds Considered in the Study
(Continued – See Table 1c)
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QSAR Cluster Compound Compound Properties
13 Lindane Insecticide-Industrial/Household w astew ater product
14 bis-2-Ethylhexyl-adipate Plasticizer-Industrial/Household w astew ater product
14 di-sec-Octylphthalate Carcinogen
14 d--n-Octylphthalate Plasticizer
15 Chlorotetracycline Pharmaceutical-Human/Veterinary Antibiotic
15 Doxycycline Pharmaceutical-Human/Veterinary Antibiotic
15 Terramycin Antibiotic
15 Tetracycline Pharmaceutical-Human/Veterinary Antibiotic
16 Ciprofloxacin Pharmaceutical-Human/Veterinary Antibiotic
16 Diltiazem Pharmaceutical-Human Drug
16 Enalaprilat Pharmaceutical-Human Drug
16 Enrofloxacin Antibiotic-Industrial/Household w astew ater product
16 Erythromycin Pharmaceutical-Human/Veterinary Antibiotic
16 Lincomycin Pharmaceutical-Human/Veterinary Antibiotic
16 Norfloxacin Pharmaceutical-Human/Veterinary Antibiotic
16 Ranitidine Pharmaceutical-Human Drug
17 Digoxin Pharmaceutical-Human Drug
17 Tylosin Pharmaceutical-Human/Veterinary Antibiotic
18 Ethylenediaminetetraacetic Acid (EDTA) Chelating agent
18 Nitrilotriacetic Acid Carcinogen
18 N-triacetic Acid
19 Perchloric Acid Used to prepare perchlorate, produce films, oxidant-Carcinogen
19 Sulfachlorpyridazine Pharmaceutical-Human/Veterinary Antibiotic
19 Sulfadimethoxine Pharmaceutical-Human/Veterinary Antibiotic
19 Sulfamerazine Pharmaceutical-Human/Veterinary Antibiotic
19 Sulfamethazine Pharmaceutical-Human/Veterinary Antibiotic
19 Sulfamethizole Pharmaceutical-Human/Veterinary Antibiotic
19 Sulfamethoxazole Pharmaceutical-Human/Veterinary Antibiotic
19 Sulfathiazole Pharmaceutical-Human/Veterinary Antibiotic
20 Tributyl Tin Estrogen
N/A Anatoxin a Algal toxin
N/A Asparagine Amino Acid
N/A Aspartic Acid Amino Acid
N/A Cylindrospermopsin Algal toxin
N/A Histidine Amino Acid
N/A Lysine Amino Acid
N/A Methionine Amino Acid
N/A Microcystin LR Algal toxin
N/A N-nitroso dimethyl amine (NDMA) Carcinogen
N/A Phenylalanine Amino Acid
N/A Saxitoxin Algal toxin
N/A Urea Fertilizer

Table 1e.  Description of Compounds Considered in the Study
(Continued – See Table 1d)
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Table 2.  Molecular Descriptors Used in Models 
(For detailed description refer to Appendix 1) 

 
Charge/Polarity Properties Molecular Complexity Properties
3D Descriptors of Entire Molecule 3D Descriptors of Entire Molecule

ABSQ Ovality
Dipole Surface

MaxHp Chi Indices
MaxNeg x1
MaxQp xp4

Polarizability xc3
3D Descriptors for CoMMA xpc4

Py xv1
Pz xvp4
P xvp7
Q xvp10

Dx xvc3
Dy xvpc4
Dz xvch6
Qxx Subgraph Count Indices
Qyy nxp5

Atom Type E-State Descriptors nxc3
SsCH3 nxch6
SssCH2 3D Descriptors for CoMMA
SaaCH Ix
SdssC Iy
SdO Total Topological Descriptors
SsCl W

Hydrogen Atom Type E-State Descriptors Pf
SssOH sumdell
Shother tets2
Hmax totop
Gmax Wt
Hmin nclass
Gmin Traditional Kappa Shape Indices

Molecular Properties k0
Qs k1
Qsv k2

k3
Information Indices

Hydrogen Bonding Properties si

Molecular Properties IC
numHBa R
SHHbd idc

idcbar
Molecular Properties

Hydrophobicity Properties fw
LogP nelem

nrings
ncirc

Other phia
LD50 knotp
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Membrane Properties BW-30 ESPA-2 LFC-1 TFC-HR

Contact Angle (degrees) 61.48 61.33 61.68 61.47

Zeta Potential (mV) -12.82 -26.03 -17.33 -16.27

Zeta Potential Slope (pH 5-7) -2.67 -5.00 -1.03 -1.61

COO/Amide I Ratio 0.46 0.31 0.43 0.33

COO/Amide II Ratio 0.42 0.27 0.42 0.33

OH/Amide I Ratio 2.09 0.53 1.37 0.80

Polyamide Thickness 1.30 1.31 1.19 0.69

Roughness (nm) 82.90 90.86 111.50 48.64

Specific Water Flux (GFD/PSI) 0.15 0.21 0.21 0.18

Table 3.  Polyamide (PA) Reverse Osmosis Membrane Properties
These were used as inputs in development of the “Universal” PA model.  BW-30 shows a higher OH/Amide I 
Ratio, meaning it is a less cross-linked membrane.  Largest differences were observed with OH/Amide I Ratio 
(measure of cross-linking), Roughness, relative Polyamide Thickness and Zeta Potential.  Other properties 
exhibited less variation.  (For detailed definitions refer to Appendix 1)
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QSAR Cluster Compound Commercial Source Isotope
1 Alanine American Radiolabeled Chemicals 14C
1 Caffeine American Radiolabeled Chemicals 14C
1 Cysteine American Radiolabeled Chemicals 14C
1 Dichloroacetic Acid American Radiolabeled Chemicals 14C
1 Glycine American Radiolabeled Chemicals 14C
1 N-dimethylamine American Radiolabeled Chemicals 14C
1 Phenol Moravek 14C
1 t Butyl Alcohol Moravek 14C
1 Threonine American Radiolabeled Chemicals 14C
1 Valine American Radiolabeled Chemicals 14C
2 Ethylbenzene Sigma 14C
2 Toluene Sigma 14C
3 1,4 Dichlorophenoxyacetic Acid American Radiolabeled Chemicals 14C
3 2,3,4,5,6 Pentachlorophenol American Radiolabeled Chemicals 14C
3 4,6 Dichlorophenol American Radiolabeled Chemicals 14C
3 Nitrobenzene American Radiolabeled Chemicals 14C
3 Phthalic Anhydride American Radiolabeled Chemicals 14C
3 Trichloroacetic Acid American Radiolabeled Chemicals 14C
4 17a Estradiol American Radiolabeled Chemicals 14C
4 4 Nonylphenol American Radiolabeled Chemicals 14C
4 beta Sitostanol n Hydrate American Radiolabeled Chemicals 3H
4 Cholesterol American Radiolabeled Chemicals 14C
4 Codeine American Radiolabeled Chemicals 14C
4 Estrone American Radiolabeled Chemicals 14C
4 Testosterone American Radiolabeled Chemicals 14C
5 Bisphenol Moravek 14C
5 Diethylstilbestrol American Radiolabeled Chemicals 14C
6 2,4 Dinitrotoluene American Radiolabeled Chemicals 14C
8 methyl parathion American Radiolabeled Chemicals 14C
8 Progesterone American Radiolabeled Chemicals 14C
9 2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) Sigma 14C
9 Cimetidine Amersham 3H
9 Diethylphthalate American Radiolabeled Chemicals 14C
9 Ibuprofen American Radiolabeled Chemicals 14C
10 Chlorpyrifos American Radiolabeled Chemicals 14C
12 Phenanthrene Moravek 14C
13 1,1,2,2, Tetrachloroethylene (PCE) American Radiolabeled Chemicals 14C
13 Benzene Moravek 14C
13 Lindane American Radiolabeled Chemicals 14C
15 Doxycycline American Radiolabeled Chemicals 3H
15 Tetracycline Moravek 3H
16 Ciprof loxacin Moravek 14C
16 Erythromycin American Radiolabeled Chemicals 14C
18 Ethylenediaminetetraacetic Acid (EDTA) Sigma 14C
N/A Asparaginine American Radiolabeled Chemicals 14C
N/A Aspartic Acid American Radiolabeled Chemicals 14C
N/A Histidine American Radiolabeled Chemicals 14C
N/A Lysine American Radiolabeled Chemicals 14C
N/A Methionine American Radiolabeled Chemicals 14C
N/A N-nitroso dimethyl amine (NDMA) American Radiolabeled Chemicals 14C
N/A Urea American Radiolabeled Chemicals 14C

Table 4.  Surrogate Compounds Chosen for the Study 
The table shows that QSAR cluster the compounds fall into, the commercial source and 
the radioisotope used in the study. 
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               Membranes Used in the Study

Membrane Manufacturer Classification

BW-30 DOW / Filmtec TFC Brackish Water RO

TFC-HR Koch / Fluid Systems TFC High Rejectin RO

ESPA-2 Hydranautics TFC Brackish Water RO

LFC-1 Hydranautics TFC Low Fouling Brackish Water RO

CA Osmonics CA Brackish Water RO

Table 5.  Membranes Used in the Study
The table shows the membranes source and their fundamental classification.
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Compound BW-30 ESPA-2 LFC-1 TFC-HR CA
1,1,2,2-Tetrachloroethylene 0.05 0.33 0.07 0.02 30.80
17a Estradiol 0.19 1.65 0.67 0.46 2.48
2,3,4,5,6 Pentachlorophenol 0.43 2.87 0.69 5.08 2.23
2,4-Dichlorophenol 7.41 2.65 2.35 2.02 2.44
2,4-Dichlorophenoxyacetic Acid 13.26 15.84 4.76 5.97 43.74
2,4-Dinitrotoluene 5.06 3.45 1.69 1.94 7.06
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 0.42 2.33 N/A 2.43 N/A
4-Nonylphenol 0.30 0.33 0.31 0.29 0.73
Alanine 13.62 18.54 15.45 10.20 53.89
Asparagine 6.93 22.01 12.01 31.86 64.97
Aspartic Acid 12.60 15.69 9.68 14.67 34.23
Benzene 25.99 23.32 19.46 21.41 56.58
beta Sitostanol n Hydrate 0.47 0.53 0.47 0.43 0.67
Bisphenol-A 3.11 1.88 1.08 0.60 0.89
Caffeine 17.86 20.62 14.62 14.78 75.53
Chlorpyrifos 0.81 0.66 1.08 0.73 2.91
Cholesterol 0.07 0.06 0.27 0.38 0.25
Cimetidine 7.75 19.61 5.19 13.96 59.89
Ciprofloxacin 2.08 10.57 7.61 6.61 35.12
Codeine 9.43 15.42 12.07 7.66 57.34
Cysteine 17.78 10.06 15.45 7.02 43.88
Dichloroacetic Acid 16.48 30.30 23.43 25.82 41.26
Diethylphthalate 6.81 4.93 5.48 1.47 16.48
Diethylstilbestrol 0.09 0.09 0.19 0.12 0.26
Doxycycline 3.26 4.37 5.33 10.24 18.03
Erythromycin 3.77 3.86 2.99 2.53 28.32
Estrone 0.62 0.22 0.92 0.16 2.68
Ethylbenzene 3.55 3.19 1.91 1.61 24.15
Ethylenediaminetetraacetic Acid (EDTA) 5.31 14.29 6.69 11.10 48.06
Glycine 14.88 26.92 22.85 18.03 56.36
Histidine 16.17 16.02 17.34 11.68 45.29
Ibuprofen 16.15 4.45 5.20 3.97 57.98
Lindane 2.36 2.13 1.07 0.94 1.52
Lysine 14.04 14.23 6.21 10.72 51.85
Methionine 24.13 16.74 10.25 19.96 46.93
methyl Parathion 0.97 1.54 1.32 3.52 2.18
N-dimethylamine 34.73 33.12 31.30 28.58 54.91
Nitrobenzene 0.38 0.50 0.29 0.36 34.46
N-nitroso dimethyl amine (NDMA) 82.34 80.76 84.23 78.67 94.06
Phenanthrene 0.28 0.45 0.66 0.46 0.43
Phenol 35.43 30.36 34.67 35.10 71.67
Phthalic Anhydride 6.84 8.02 6.06 8.14 29.08
Progesterone 0.04 0.25 0.03 0.04 1.49
t Butyl Alcohol 18.40 16.96 25.89 23.94 87.42
Testosterone 0.94 2.34 1.65 0.51 20.97
Tetracycline 3.43 7.08 3.52 2.93 32.26
Threonine 9.23 11.80 12.00 10.63 45.73
Toluene 1.51 8.37 19.03 11.91 47.79
Trichloroacetic Acid 24.37 23.32 12.80 29.05 60.12
Urea 89.37 85.11 95.48 90.01 90.58
Valine 22.95 21.48 12.18 11.10 62.72

Table 6.  Comparison of Membrane Performance – Relative P-Flux 
Measured results (raw data) from RMP assay.  Averaged Relative fluxes are based on 
F-Flux of 100% and mean based on n = 4-7.  For the most part the values are very 
similar among the PA membranes. 
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Compound BW-30 ESPA-2 LFC-1 TFC-HR CA
1,1,2,2-Tetrachloroethylene 99.95 99.67 99.93 99.98 67.77
17a Estradiol 77.59 85.93 67.29 84.92 97.52
2,3,4,5,6 Pentachlorophenol 53.42 44.66 60.72 68.69 97.77
2,4-Dichlorophenol 92.59 97.35 97.65 97.98 97.56
2,4-Dichlorophenoxyacetic Acid 5.99 17.28 3.92 9.60 5.30
2,4-Dinitrotoluene 94.94 96.55 98.31 98.06 92.94
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 5.20 19.99 N/A 21.19 N/A
4-Nonylphenol 36.64 21.02 23.36 69.90 95.98
Alanine 4.84 5.61 5.77 4.16 6.78
Asparagine 2.37 6.72 7.41 6.59 0.73
Aspartic Acid 5.54 3.54 2.81 5.54 8.48
Benzene 74.01 76.68 64.01 78.59 43.42
beta Sitostanol n Hydrate 28.93 48.57 14.30 24.75 28.23
Bisphenol-A 28.34 25.50 16.12 24.01 99.11
Caffeine 14.07 19.13 21.78 17.38 10.09
Chlorpyrifos 25.68 59.64 21.23 52.56 97.09
Cholesterol 13.39 17.87 12.56 13.33 16.48
Cimetidine 13.37 34.06 28.99 26.06 21.67
Ciprofloxacin 2.67 18.68 30.45 12.11 27.03
Codeine 13.11 47.68 38.88 16.76 26.16
Cysteine 12.61 4.98 5.77 5.68 9.37
Dichloroacetic Acid 7.83 8.16 7.12 8.78 6.23
Diethylphthalate 37.02 31.46 29.88 41.18 83.52
Diethylstilbestrol 37.33 21.66 18.39 47.75 99.74
Doxycycline 10.54 14.46 15.95 16.74 30.61
Erythromycin 7.66 13.32 7.58 9.85 8.28
Estrone 69.61 99.78 83.66 99.84 97.32
Ethylbenzene 96.45 96.81 98.09 98.39 66.72
Ethylenediaminetetraacetic Acid (EDTA) 2.98 9.07 2.12 2.03 7.52
Glycine 3.37 4.57 6.45 5.36 6.72
Histidine 6.22 7.91 7.98 4.57 8.82
Ibuprofen 18.36 8.89 8.62 10.36 20.45
Lindane 66.26 58.30 37.32 66.34 98.48
Lysine 3.11 6.90 2.35 3.82 9.30
Methionine 7.93 25.10 4.14 6.49 8.58
methyl Parathion 12.00 28.17 23.85 25.57 97.82
N-dimethylamine 6.88 22.79 28.80 7.89 13.25
Nitrobenzene 99.62 99.50 99.71 99.64 65.54
N-nitroso dimethyl amine (NDMA) 17.66 14.08 0.53 21.33 3.51
Phenanthrene 99.71 85.27 99.34 98.28 99.57
Phenol 59.99 63.34 65.33 64.67 28.33
Phthalic Anhydride 1.68 3.05 3.06 3.45 6.22
Progesterone 25.33 34.21 23.25 33.90 98.51
t Butyl Alcohol 7.11 5.17 6.18 10.10 4.04
Testosterone 11.65 27.93 41.21 14.54 74.38
Tetracycline 7.69 18.89 17.59 14.45 14.42
Threonine 4.04 3.57 3.88 4.89 7.52
Toluene 98.49 91.63 80.97 88.09 52.21
Trichloroacetic Acid 8.83 6.90 1.99 6.50 4.19
Urea 1.40 8.29 1.66 1.74 3.08
Valine 4.58 8.78 4.89 5.07 5.64

Table 7.  Comparison of Membrane Performance – Relative M-Flux 
Measured results (raw data) from RMP assay.  Averaged Relative fluxes are based on F-
Flux of 100% and mean based on n = 4-7.  For the most part the values are very similar 
among the PA membranes. 
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Compound BW-30 ESPA-2 LFC-1 TFC-HR CA
1,1,2,2-Tetrachloroethylene 0.00 0.00 0.00 0.00 1.44
17a Estradiol 22.22 12.42 32.04 14.61 0.00
2,3,4,5,6 Pentachlorophenol 46.15 52.48 38.59 26.23 0.00
2,4-Dichlorophenol 0.00 0.00 0.00 0.00 0.00
2,4-Dichlorophenoxyacetic Acid 80.76 66.87 91.32 84.43 50.96
2,4-Dinitrotoluene 0.00 0.00 0.00 0.00 0.00
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 94.38 77.67 N/A 76.39 N/A
4-Nonylphenol 63.06 78.65 76.32 29.81 3.29
Alanine 81.54 75.85 78.77 85.64 39.33
Asparagine 90.70 71.27 80.58 61.55 34.30
Aspartic Acid 81.86 80.77 87.52 79.79 57.29
Benzene 0.00 0.00 16.54 0.00 0.00
beta Sitostanol n Hydrate 70.59 50.90 85.23 74.82 71.10
Bisphenol-A 68.55 72.62 82.80 75.39 0.00
Caffeine 68.07 60.25 63.61 67.84 14.37
Chlorpyrifos 73.50 39.70 77.70 46.71 0.00
Cholesterol 86.54 82.06 87.17 86.30 83.27
Cimetidine 78.88 46.33 65.82 59.98 18.44
Ciprof loxacin 95.24 70.76 61.94 81.28 37.85
Codeine 77.46 36.90 49.06 75.59 16.50
Cysteine 69.61 84.96 78.77 87.30 46.75
Dichloroacetic Acid 75.70 61.55 69.45 65.41 52.51
Diethylphthalate 56.16 63.62 64.65 57.35 0.00
Diethylstilbestrol 62.58 78.25 81.42 52.14 0.00
Doxycycline 86.21 81.17 78.71 73.03 51.36
Erythromycin 88.56 82.82 89.43 87.61 63.41
Estrone 29.77 0.00 15.42 0.00 0.00
Ethylbenzene 0.00 0.00 0.00 0.00 9.13
Ethylenediaminetetraacetic Acid (EDTA) 91.72 76.64 91.20 86.87 44.42
Glycine 81.74 68.52 70.70 76.61 36.92
Histidine 77.61 76.07 74.68 83.76 45.89
Ibuprofen 65.49 86.66 86.18 85.67 21.57
Lindane 31.38 39.57 61.61 32.72 0.00
Lysine 82.85 78.87 91.44 85.46 38.85
Methionine 67.94 58.17 85.60 73.55 44.49
methyl Parathion 87.03 70.29 74.82 70.91 0.00
N-dimethylamine 58.38 44.09 39.90 63.53 31.84
Nitrobenzene 0.00 0.00 0.00 0.00 0.00
N-nitroso dimethyl amine (NDMA) 0.00 5.16 15.25 0.00 2.44
Phenanthrene 0.00 14.28 0.00 1.26 0.00
Phenol 4.58 6.30 0.00 0.23 0.00
Phthalic Anhydride 91.48 88.93 90.88 88.41 64.70
Progesterone 74.64 65.54 76.73 66.06 0.00
t Butyl Alcohol 74.48 77.86 67.93 65.95 8.53
Testosterone 87.41 69.73 57.14 84.95 4.65
Tetracycline 88.88 74.02 78.89 82.62 53.32
Threonine 86.74 84.62 84.12 84.48 46.75
Toluene 0.00 0.00 0.00 0.00 0.00
Trichloroacetic Acid 66.80 69.78 85.21 64.46 35.70
Urea 9.23 6.59 2.86 8.25 6.34
Valine 72.46 69.74 82.92 83.82 31.64

Table 8.  Comparison of Membrane Performance – Relative R-Flux 
Measured results (raw data) from RMP assay.  Averaged Relative fluxes are based on 
F-Flux of 100% and mean based on n = 4-7.  For the most part the values are very 
similar among the PA membranes. 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 0.05 0.03 0.09
1,4 Dichlorophenoxyacetic Acid 13.26 7.08 11.12
17a Estradiol 0.19 0.06 0.18
2,3,4,5,6 Pentachlorophenol 0.43 0.15 0.37
2,4 Dinitrotoluene 5.06 1.52 4.06
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (A lachlor) 0.42 0.10 0.44
4 Nonylphenol 0.30 0.08 0.25
4,6 Dichlorophenol 7.41 1.27 7.63
A lanine 13.62 3.53 12.74
Asparagine 6.93 2.61 9.47
Aspartic Acid 12.60 2.52 14.32
Benzene 25.99 5.45 24.97
beta Sitostanol n Hydrate 0.47 0.06 0.45
Bisphenol 3.11 1.95 2.69
Caf feine 17.86 2.91 17.61
Cholesterol 0.07 0.01 0.09
Cimetidine 7.75 3.26 7.80
Ciprof loxacin 2.08 1.98 1.51
Clorpyrifos 0.81 0.05 0.80
Codeine 9.43 4.74 7.15
Cysteine 17.78 6.42 16.20
Dichloroacetic Acid 16.48 4.42 14.65
Diethylphthalate 6.81 4.04 5.76
Diethylstilbestrol 0.09 0.11 0.10
Doxycycline 3.26 0.84 4.14
Erythromycin 3.77 0.38 3.72
Estrone 0.62 0.16 0.59
Ethylbenzene 3.55 0.36 4.50
Ethylenediaminetetraacetic Acid (EDTA) 5.31 1.49 5.09
Glycine 14.88 4.37 6.12
Histidine 16.17 1.01 15.61
Ibuprofen 16.15 2.48 15.83
Lindane 2.36 0.89 1.93
Lysine 14.04 3.25 13.88
Methionine 24.13 5.48 25.39
methyl Parathion 0.97 0.15 1.19
N-Dimethylamine 34.73 4.38 31.62
Nitrobenzene 0.38 0.10 0.39
N-nitroso dimethyl amine (NDMA) 82.34 1.87 101.35
Phenanthrene 0.28 0.01 0.27
Phenol 35.43 5.68 33.46
Phthalic Anhydride 6.84 2.73 5.58
Progesterone 0.04 0.01 0.06
t Butyl A lcohol 18.40 3.76 19.63
Testosterone 0.94 0.50 0.87
Tetracycline 3.43 1.48 3.32
Threonine 9.23 2.48 9.01
Toluene 1.51 0.04 1.41
Trichloroacetic Acid 24.37 5.41 22.80
Urea 89.37 2.10 96.32
Valine 22.95 6.43 21.39

P-Flux

Table 9a.  BW-30 Performance Based on Individual Compounds – Relative P-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  
In most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 99.95 0.03 93.76
1,4 Dichlorophenoxyacetic Acid 5.99 1.51 6.07
17a Estradiol 77.59 12.82 77.02
2,3,4,5,6 Pentachlorophenol 53.42 5.33 53.23
2,4 Dinitrotoluene 94.94 1.52 95.97
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 5.20 1.87 4.47
4 Nonylphenol 36.64 5.83 35.99
4,6 Dichlorophenol 92.59 1.27 96.83
Alanine 4.84 0.73 5.57
Asparagine 2.37 0.72 2.66
Aspartic Acid 5.54 2.61 4.90
Benzene 74.01 5.45 79.34
beta Sitostanol n Hydrate 28.93 9.38 16.59
Bisphenol 28.34 8.87 28.63
Caffeine 14.07 6.54 13.06
Cholesterol 13.39 1.26 20.17
Cimetidine 13.37 2.91 14.46
Ciprof loxacin 2.67 1.36 2.41
Clorpyrifos 25.68 13.53 20.83
Codeine 13.11 4.08 10.35
Cysteine 12.61 1.31 7.82
Dichloroacetic Acid 7.83 1.06 8.62
Diethylphthalate 37.02 17.76 28.67
Diethylstilbestrol 37.33 8.08 33.85
Doxycycline 10.54 2.52 10.67
Erythromycin 7.66 1.69 5.36
Estrone 69.61 23.30 68.57
Ethylbenzene 96.45 0.36 98.43
Ethylenediaminetetraacetic Acid (EDTA) 2.98 0.94 2.46
Glycine 3.37 0.81 4.19
Histidine 6.22 1.75 7.29
Ibuprofen 18.36 0.69 19.16
Lindane 66.26 5.63 62.01
Lysine 3.11 0.78 2.96
Methionine 7.93 2.68 5.60
methyl Parathion 12.00 1.86 18.28
N-Dimethylamine 6.88 1.79 5.49
Nitrobenzene 99.62 0.10 97.42
N-nitroso dimethyl amine (NDMA) 17.66 1.87 18.90
Phenanthrene 99.71 0.02 100.45
Phenol 59.99 5.06 60.66
Phthalic Anhydride 1.68 0.99 1.96
Progesterone 25.33 2.14 28.41
t Butyl Alcohol 7.11 1.80 6.80
Testosterone 11.65 3.45 13.49
Tetracycline 7.69 0.94 8.63
Threonine 4.04 0.62 5.92
Toluene 98.49 0.04 94.23
Trichloroacetic Acid 8.83 1.23 7.05
Urea 1.40 0.06 1.68
Valine 4.58 1.41 8.57

M-Flux

Table 9b.  BW-30 Performance Based on Individual Compounds – Relative M-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  
In most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 0.00 0.00 0.00
1,4 Dichlorophenoxyacetic Acid 80.76 7.08 81.08
17a Estradiol 22.22 12.81 29.32
2,3,4,5,6 Pentachlorophenol 46.15 5.30 53.52
2,4 Dinitrotoluene 0.00 0.00 8.41
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 94.38 1.95 94.03
4 Nonylphenol 63.06 5.88 63.88
4,6 Dichlorophenol 0.00 0.00 0.00
Alanine 81.54 3.84 79.84
Asparagine 90.70 3.26 91.74
Aspartic Acid 81.86 4.84 82.57
Benzene 0.00 0.00 0.00
beta Sitostanol n Hydrate 70.59 9.41 73.77
Bisphenol 68.55 10.53 65.81
Caffeine 68.07 9.29 69.59
Cholesterol 86.54 1.25 87.46
Cimetidine 78.88 5.83 79.85
Ciprof loxacin 95.24 3.15 92.20
Clorpyrifos 73.50 13.49 71.33
Codeine 77.46 8.49 77.34
Cysteine 69.61 6.37 76.79
Dichloroacetic Acid 75.70 5.45 75.43
Diethylphthalate 56.16 21.24 59.64
Diethylstilbestrol 62.58 8.14 67.32
Doxycycline 86.21 2.96 85.33
Erythromycin 88.56 1.33 91.16
Estrone 29.77 23.40 28.69
Ethylbenzene 0.00 0.00 0.00
Ethylenediaminetetraacetic Acid (EDTA) 91.72 2.07 91.11
Glycine 81.74 5.07 87.92
Histidine 77.61 2.19 76.70
Ibuprofen 65.49 2.77 65.88
Lindane 31.38 5.85 24.78
Lysine 82.85 3.88 82.97
Methionine 67.94 7.21 64.32
methyl Parathion 87.03 1.95 86.03
N-Dimethylamine 58.38 3.73 31.81
Nitrobenzene 0.00 0.00 0.00
N-nitroso dimethyl amine (NDMA) 0.00 0.00 31.79
Phenanthrene 0.00 0.00 12.63
Phenol 4.58 4.66 2.68
Phthalic Anhydride 91.48 3.59 91.30
Progesterone 74.64 2.15 77.15
t Butyl Alcohol 74.48 4.76 78.13
Testosterone 87.41 3.72 87.55
Tetracycline 88.88 1.63 86.62
Threonine 86.74 2.64 83.13
Toluene 0.00 0.00 0.00
Trichloroacetic Acid 66.80 5.79 63.68
Urea 9.23 2.16 4.12
Valine 72.46 6.12 70.71

R-Flux

Table 9c.  BW-30 Performance Based on Individual Compounds – Relative R-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  In 
most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 0.33 0.22 0.29
1,4 Dichlorophenoxyacetic Acid 15.84 6.32 14.64
17a Estradiol 1.65 0.62 1.84
2,3,4,5,6 Pentachlorophenol 2.87 1.55 2.60
2,4 Dinitrotoluene 3.45 0.83 3.44
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 2.33 0.64 2.55
4 Nonylphenol 0.33 0.13 0.13
4,6 Dichlorophenol 2.65 0.59 3.31
Alanine 18.54 6.46 14.96
Asparagine 22.01 2.99 22.17
Aspartic Acid 15.69 1.87 18.82
Benzene 23.32 4.14 30.72
beta Sitostanol n Hydrate 0.53 0.02 0.47
Bisphenol 1.88 0.69 2.00
Caffeine 20.62 4.20 19.64
Cholesterol 0.06 0.01 0.03
Cimetidine 19.61 6.43 16.21
Ciprof loxacin 10.57 5.74 11.67
Clorpyrifos 0.66 0.05 0.71
Codeine 15.42 5.20 15.88
Cysteine 10.06 2.99 8.36
Dichloroacetic Acid 30.30 6.42 30.56
Diethylphthalate 4.93 1.62 5.91
Diethylstilbestrol 0.09 0.10 0.15
Doxycycline 4.37 2.02 4.09
Erythromycin 3.86 0.53 4.24
Estrone 0.22 0.11 0.28
Ethylbenzene 3.19 0.15 2.63
Ethylenediaminetetraacetic Acid (EDTA) 14.29 5.34 13.69
Glycine 26.92 2.75 25.22
Histidine 16.02 2.53 13.00
Ibuprofen 4.45 1.60 4.51
Lindane 2.13 0.48 2.34
Lysine 14.23 3.33 14.75
Methionine 16.74 7.04 16.95
methyl Parathion 1.54 0.18 1.54
N-Dimethylamine 33.12 8.90 34.94
Nitrobenzene 0.50 0.06 0.47
N-nitroso dimethyl amine (NDMA) 80.76 8.57 71.97
Phenanthrene 0.45 0.06 0.55
Phenol 30.36 7.40 27.89
Phthalic Anhydride 8.02 4.82 7.08
Progesterone 0.25 0.13 0.21
t Butyl Alcohol 16.96 2.64 17.89
Testosterone 2.34 1.22 2.31
Tetracycline 7.08 2.56 5.82
Threonine 11.80 2.29 11.59
Toluene 8.37 0.88 6.60
Trichloroacetic Acid 23.32 6.68 20.20
Urea 85.11 10.20 84.52
Valine 21.48 8.84 17.16

P-Flux

Table 10a.  ESPA-2 Performance Based on Individual Compounds – Relative P-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  
In most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 

 



 175

Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 99.67 0.22 96.26
1,4 Dichlorophenoxyacetic Acid 17.28 2.14 18.06
17a Estradiol 85.93 8.50 90.12
2,3,4,5,6 Pentachlorophenol 44.66 6.42 47.44
2,4 Dinitrotoluene 96.55 0.83 103.20
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 19.99 3.86 19.66
4 Nonylphenol 21.02 3.14 20.79
4,6 Dichlorophenol 97.35 0.59 97.69
Alanine 5.61 2.38 5.69
Asparagine 6.72 1.02 7.64
Aspartic Acid 3.54 0.56 3.05
Benzene 76.68 4.14 78.22
beta Sitostanol n Hydrate 48.57 4.34 49.82
Bisphenol 25.50 7.50 24.05
Caffeine 19.13 4.41 17.74
Cholesterol 17.87 3.42 21.43
Cimetidine 34.06 2.06 40.06
Ciprof loxacin 18.68 3.78 18.84
Clorpyrifos 59.64 11.05 61.97
Codeine 47.68 6.58 48.31
Cysteine 4.98 0.86 6.21
Dichloroacetic Acid 8.16 1.21 7.60
Diethylphthalate 31.46 8.92 31.95
Diethylstilbestrol 21.66 5.69 16.59
Doxycycline 14.46 1.48 15.10
Erythromycin 13.32 2.50 13.02
Estrone 99.78 0.11 93.84
Ethylbenzene 96.81 0.15 88.96
Ethylenediaminetetraacetic Acid (EDTA) 9.07 3.78 8.02
Glycine 4.57 1.59 4.69
Histidine 7.91 0.71 8.12
Ibuprofen 8.89 2.87 8.84
Lindane 58.30 10.23 56.03
Lysine 6.90 2.10 9.25
Methionine 25.10 9.80 18.83
methyl Parathion 28.17 6.83 25.00
N-Dimethylamine 22.79 12.44 21.84
Nitrobenzene 99.50 0.06 97.58
N-nitroso dimethyl amine (NDMA) 14.08 1.78 13.32
Phenanthrene 85.27 8.74 84.54
Phenol 63.34 5.43 63.55
Phthalic Anhydride 3.05 1.23 3.11
Progesterone 34.21 6.30 32.75
t Butyl Alcohol 5.17 1.23 5.50
Testosterone 27.93 10.07 28.66
Tetracycline 18.89 1.65 17.15
Threonine 3.57 0.50 4.77
Toluene 91.63 0.88 84.41
Trichloroacetic Acid 6.90 2.31 7.78
Urea 8.29 13.68 3.22
Valine 8.78 2.44 7.46

M-Flux

Table 10b.  ESPA-2 Performance Based on Individual Compounds – Relative M-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  
In most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 99.67 0.22 96.26
1,4 Dichlorophenoxyacetic Acid 17.28 2.14 18.06
17a Estradiol 85.93 8.50 90.12
2,3,4,5,6 Pentachlorophenol 44.66 6.42 47.44
2,4 Dinitrotoluene 96.55 0.83 103.20
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 19.99 3.86 19.66
4 Nonylphenol 21.02 3.14 20.79
4,6 Dichlorophenol 97.35 0.59 97.69
Alanine 5.61 2.38 5.69
Asparagine 6.72 1.02 7.64
Aspartic Acid 3.54 0.56 3.05
Benzene 76.68 4.14 78.22
beta Sitostanol n Hydrate 48.57 4.34 49.82
Bisphenol 25.50 7.50 24.05
Caffeine 19.13 4.41 17.74
Cholesterol 17.87 3.42 21.43
Cimetidine 34.06 2.06 40.06
Ciprof loxacin 18.68 3.78 18.84
Clorpyrifos 59.64 11.05 61.97
Codeine 47.68 6.58 48.31
Cysteine 4.98 0.86 6.21
Dichloroacetic Acid 8.16 1.21 7.60
Diethylphthalate 31.46 8.92 31.95
Diethylstilbestrol 21.66 5.69 16.59
Doxycycline 14.46 1.48 15.10
Erythromycin 13.32 2.50 13.02
Estrone 99.78 0.11 93.84
Ethylbenzene 96.81 0.15 88.96
Ethylenediaminetetraacetic Acid (EDTA) 9.07 3.78 8.02
Glycine 4.57 1.59 4.69
Histidine 7.91 0.71 8.12
Ibuprofen 8.89 2.87 8.84
Lindane 58.30 10.23 56.03
Lysine 6.90 2.10 9.25
Methionine 25.10 9.80 18.83
methyl Parathion 28.17 6.83 25.00
N-Dimethylamine 22.79 12.44 21.84
Nitrobenzene 99.50 0.06 97.58
N-nitroso dimethyl amine (NDMA) 14.08 1.78 13.32
Phenanthrene 85.27 8.74 84.54
Phenol 63.34 5.43 63.55
Phthalic Anhydride 3.05 1.23 3.11
Progesterone 34.21 6.30 32.75
t Butyl Alcohol 5.17 1.23 5.50
Testosterone 27.93 10.07 28.66
Tetracycline 18.89 1.65 17.15
Threonine 3.57 0.50 4.77
Toluene 91.63 0.88 84.41
Trichloroacetic Acid 6.90 2.31 7.78
Urea 8.29 13.68 3.22
Valine 8.78 2.44 7.46

M-Flux

Table 10b.  ESPA-2 Performance Based on Individual Compounds – Relative M-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  
In most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 0.07 0.02 0.11
1,4 Dichlorophenoxyacetic Acid 4.76 1.02 4.52
17a Estradiol 0.67 0.14 0.89
2,3,4,5,6 Pentachlorophenol 0.69 0.11 0.82
2,4 Dinitrotoluene 1.69 0.27 1.89
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) N/A N/A N/A
4 Nonylphenol 0.31 0.03 0.37
4,6 Dichlorophenol 2.35 1.01 1.72
Alanine 15.45 3.00 15.11
Asparagine 12.01 2.70 12.06
Aspartic Acid 9.68 2.24 8.31
Benzene 19.46 5.64 16.21
beta Sitostanol n Hydrate 0.47 0.20 0.31
Bisphenol 1.08 0.52 0.96
Caffeine 14.62 4.08 17.01
Cholesterol 0.27 0.08 0.24
Cimetidine 5.19 1.70 4.78
Ciprofloxacin 7.61 2.33 7.97
Clorpyrifos 1.08 0.13 1.12
Codeine 12.07 2.56 10.85
Cysteine 15.45 3.00 15.33
Dichloroacetic Acid 23.43 1.51 26.75
Diethylphthalate 5.48 1.21 5.50
Diethylstilbestrol 0.19 0.07 0.15
Doxycycline 5.33 0.38 5.74
Erythromycin 2.99 1.23 2.78
Estrone 0.92 0.13 0.90
Ethylbenzene 1.91 0.12 1.95
Ethylenediaminetetraacetic Acid (EDTA) 6.69 2.28 7.21
Glycine 22.85 4.86 26.60
Histidine 17.34 2.30 19.26
Ibuprofen 5.20 2.16 5.25
Lindane 1.07 0.29 1.09
Lysine 6.21 1.84 5.85
Methionine 10.25 1.63 10.56
methyl Parathion 1.32 0.21 1.14
N-Dimethylamine 31.30 3.35 28.76
Nitrobenzene 0.29 0.06 0.29
N-nitroso dimethyl amine (NDMA) 84.23 1.81 80.37
Phenanthrene 0.66 0.17 0.72
Phenol 34.67 2.19 39.54
Phthalic Anhydride 6.06 1.29 5.59
Progesterone 0.03 0.00 0.01
t Butyl Alcohol 25.89 4.19 22.32
Testosterone 1.65 0.94 1.77
Tetracycline 3.52 1.45 3.33
Threonine 12.00 1.84 11.86
Toluene 19.03 4.79 19.51
Trichloroacetic Acid 12.80 2.73 12.65
Urea 95.48 2.81 85.33
Valine 12.18 1.96 12.29

P-Flux

Table 11a.  LFC-1 Performance Based on Individual Compounds – Relative P-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  In 
most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 99.93 0.02 96.99
1,4 Dichlorophenoxyacetic Acid 3.92 0.40 3.68
17a Estradiol 67.29 6.49 72.51
2,3,4,5,6 Pentachlorophenol 60.72 3.58 56.12
2,4 Dinitrotoluene 98.31 0.27 100.87
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) N/A N/A N/A
4 Nonylphenol 23.36 0.75 24.07
4,6 Dichlorophenol 97.65 1.01 97.84
Alanine 5.77 1.15 6.50
Asparagine 7.41 3.29 5.73
Aspartic Acid 2.81 1.19 4.63
Benzene 64.01 11.87 69.75
beta Sitostanol n Hydrate 14.30 5.73 13.78
Bisphenol 16.12 3.63 15.61
Caffeine 21.78 4.86 22.36
Cholesterol 12.56 2.75 12.00
Cimetidine 28.99 2.69 26.25
Ciprofloxacin 30.45 3.94 32.59
Clorpyrifos 21.23 3.31 18.88
Codeine 38.88 2.76 37.98
Cysteine 5.77 1.15 6.74
Dichloroacetic Acid 7.12 0.71 7.57
Diethylphthalate 29.88 3.73 29.19
Diethylstilbestrol 18.39 6.18 18.62
Doxycycline 15.95 1.44 16.43
Erythromycin 7.58 2.07 8.30
Estrone 83.66 4.56 74.58
Ethylbenzene 98.09 0.12 85.79
Ethylenediaminetetraacetic Acid (EDTA) 2.12 0.20 2.12
Glycine 6.45 0.63 4.91
Histidine 7.98 1.38 7.09
Ibuprofen 8.62 1.85 8.78
Lindane 37.32 5.83 40.88
Lysine 2.35 0.29 1.40
Methionine 4.14 0.78 4.53
methyl Parathion 23.85 6.68 25.75
N-Dimethylamine 28.80 2.96 29.10
Nitrobenzene 99.71 0.06 90.41
N-nitroso dimethyl amine (NDMA) 0.53 0.72 0.46
Phenanthrene 99.34 0.17 97.55
Phenol 65.33 2.19 61.98
Phthalic Anhydride 3.06 0.36 3.16
Progesterone 23.25 7.77 22.68
t Butyl Alcohol 6.18 0.64 5.96
Testosterone 41.21 16.05 46.42
Tetracycline 17.59 3.78 16.99
Threonine 3.88 0.43 3.54
Toluene 80.97 4.79 89.27
Trichloroacetic Acid 1.99 0.48 1.68
Urea 1.66 0.32 1.70
Valine 4.89 1.67 4.21

M-Flux

Table 11b.  LFC-1 Performance Based on Individual Compounds – Relative M-Flux 
The table shows how well compound behavior could be predicted by the ANN 
model.  In most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 0.00 0.00 -2.58
1,4 Dichlorophenoxyacetic Acid 91.32 1.28 90.28
17a Estradiol 32.04 6.62 32.61
2,3,4,5,6 Pentachlorophenol 38.59 3.47 37.65
2,4 Dinitrotoluene 0.00 0.00 1.75
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) N/A N/A N/A
4 Nonylphenol 76.32 0.74 76.99
4,6 Dichlorophenol 0.00 0.00 6.22
Alanine 78.77 3.45 76.08
Asparagine 80.58 5.15 83.17
Aspartic Acid 87.52 3.12 87.17
Benzene 16.54 17.15 12.98
beta Sitostanol n Hydrate 85.23 5.90 85.52
Bisphenol 82.80 3.87 84.03
Caffeine 63.61 7.55 72.39
Cholesterol 87.17 2.70 87.83
Cimetidine 65.82 3.99 63.65
Ciprofloxacin 61.94 4.99 62.14
Clorpyrifos 77.70 3.34 76.80
Codeine 49.06 2.68 46.74
Cysteine 78.77 3.45 80.05
Dichloroacetic Acid 69.45 1.88 75.94
Diethylphthalate 64.65 4.23 64.57
Diethylstilbestrol 81.42 6.14 80.44
Doxycycline 78.71 1.51 79.40
Erythromycin 89.43 3.19 90.00
Estrone 15.42 4.62 18.65
Ethylbenzene 0.00 0.00 -2.06
Ethylenediaminetetraacetic Acid (EDTA) 91.20 2.34 92.16
Glycine 70.70 4.57 76.65
Histidine 74.68 3.51 75.48
Ibuprofen 86.18 3.37 85.14
Lindane 61.61 5.90 61.22
Lysine 91.44 1.83 91.00
Methionine 85.60 1.85 84.79
methyl Parathion 74.82 6.87 75.01
N-Dimethylamine 39.90 3.06 39.43
Nitrobenzene 0.00 0.00 -2.69
N-nitroso dimethyl amine (NDMA) 15.25 2.23 18.60
Phenanthrene 0.00 0.00 -4.09
Phenol 0.00 0.00 -1.45
Phthalic Anhydride 90.88 1.60 90.03
Progesterone 76.73 7.78 80.95
t Butyl Alcohol 67.93 4.71 66.91
Testosterone 57.14 16.70 61.03
Tetracycline 78.89 4.60 78.49
Threonine 84.12 2.09 80.51
Toluene 0.00 0.00 0.23
Trichloroacetic Acid 85.21 2.86 82.86
Urea 2.86 2.58 4.38
Valine 82.92 3.18 83.59

R-Flux

Table 11c.  LFC-1 Performance Based on Individual Compounds – Relative R-Flux 
The table shows how well compound behavior could be predicted by the ANN 
model.  In most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Table 12a.  TFC-HR Performance Based on Individual Compounds – Relative P-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  
In most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 

 
Actual Predicted

Compound (Avg) (StDev)
1,1,2,2, Tetrachloroethylene (PCE) 0.02 0.01 0.08
1,4 Dichlorophenoxyacetic Acid 5.97 2.93 5.04
17a Estradiol 0.46 0.15 0.37
2,3,4,5,6 Pentachlorophenol 5.08 1.82 5.74
2,4 Dinitrotoluene 1.94 0.54 1.96
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 2.43 0.79 2.65
4 Nonylphenol 0.29 0.08 0.22
4,6 Dichlorophenol 2.02 0.65 2.18
Alanine 10.20 4.43 9.73
Asparagine 31.86 4.44 34.91
Aspartic Acid 14.67 3.69 12.00
Benzene 21.41 3.41 22.21
beta Sitostanol n Hydrate 0.43 0.03 0.40
Bisphenol 0.60 0.21 0.24
Caffeine 14.78 3.54 17.20
Cholesterol 0.38 0.05 0.34
Cimetidine 13.96 9.19 13.54
Ciprofloxacin 6.61 2.60 4.89
Clorpyrifos 0.73 0.24 0.75
Codeine 7.66 2.93 7.39
Cysteine 7.02 1.85 7.75
Dichloroacetic Acid 25.82 4.86 20.67
Diethylphthalate 1.47 0.32 1.42
Diethylstilbestrol 0.12 0.03 0.15
Doxycycline 10.24 7.79 8.58
Erythromycin 2.53 0.50 2.54
Estrone 0.16 0.02 0.20
Ethylbenzene 1.61 0.23 2.83
Ethylenediaminetetraacetic Acid (EDTA) 11.10 3.67 11.30
Glycine 18.03 3.90 2.68
Histidine 11.68 3.38 9.64
Ibuprofen 3.97 1.12 3.91
Lindane 0.94 0.22 1.00
Lysine 10.72 2.79 16.85
Methionine 19.96 5.59 17.45
methyl Parathion 3.52 4.74 3.28
N-Dimethylamine 28.58 4.20 35.24
Nitrobenzene 0.36 0.08 0.34
N-nitroso dimethyl amine (NDMA) 78.67 2.07 74.72
Phenanthrene 0.46 0.04 0.51
Phenol 35.10 2.99 32.48
Phthalic Anhydride 8.14 2.18 8.20
Progesterone 0.04 0.02 0.17
t Butyl Alcohol 23.94 3.32 19.14
Testosterone 0.51 0.22 0.33
Tetracycline 2.93 0.93 2.98
Threonine 10.63 0.98 8.68
Toluene 11.91 0.64 7.12
Trichloroacetic Acid 29.05 8.69 28.16
Urea 90.01 1.84 72.31
Valine 11.10 5.00 9.41

P-Flux
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Table 12b.  TFC-HR Performance Based on Individual Compounds – Relative M-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  In 
most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 

 
Actual Predicted

Compound (Avg) (StDev)
1,1,2,2, Tetrachloroethylene (PCE) 99.98 0.01 103.08
1,4 Dichlorophenoxyacetic Acid 9.60 2.96 8.58
17a Estradiol 84.92 12.73 75.07
2,3,4,5,6 Pentachlorophenol 68.69 7.92 73.84
2,4 Dinitrotoluene 98.06 0.54 96.01
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 21.19 6.62 24.66
4 Nonylphenol 69.90 16.95 70.73
4,6 Dichlorophenol 97.98 0.65 94.19
Alanine 4.16 0.60 5.41
Asparagine 6.59 1.40 5.26
Aspartic Acid 5.54 0.49 5.32
Benzene 78.59 3.41 81.24
beta Sitostanol n Hydrate 24.75 4.01 21.71
Bisphenol 24.01 4.96 25.91
Caffeine 17.38 4.49 17.06
Cholesterol 13.33 4.58 14.79
Cimetidine 26.06 3.97 25.32
Ciprofloxacin 12.11 4.52 11.23
Clorpyrifos 52.56 6.78 55.86
Codeine 16.76 5.82 20.50
Cysteine 5.68 1.21 5.58
Dichloroacetic Acid 8.78 1.06 8.61
Diethylphthalate 41.18 12.30 40.75
Diethylstilbestrol 47.75 10.61 54.06
Doxycycline 16.74 4.68 15.54
Erythromycin 9.85 0.53 10.48
Estrone 99.84 0.02 103.33
Ethylbenzene 98.39 0.23 94.23
Ethylenediaminetetraacetic Acid (EDTA) 2.03 0.79 2.28
Glycine 5.36 0.46 5.51
Histidine 4.57 1.24 4.59
Ibuprofen 10.36 1.54 11.54
Lindane 66.34 10.00 66.21
Lysine 3.82 0.98 3.48
Methionine 6.49 0.69 5.07
methyl Parathion 25.57 6.43 22.48
N-Dimethylamine 7.89 1.18 7.62
Nitrobenzene 99.64 0.08 100.87
N-nitroso dimethyl amine (NDMA) 21.33 2.07 20.80
Phenanthrene 98.28 2.07 88.47
Phenol 64.67 2.85 61.87
Phthalic Anhydride 3.45 0.86 3.06
Progesterone 33.90 21.76 26.30
t Butyl Alcohol 10.10 1.59 8.47
Testosterone 14.54 4.44 14.39
Tetracycline 14.45 4.32 15.89
Threonine 4.89 1.02 5.22
Toluene 88.09 0.64 93.08
Trichloroacetic Acid 6.50 2.51 6.18
Urea 1.74 0.13 1.76
Valine 5.07 1.05 6.05

M-Flux
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Table 12c.  TFC-HR Performance Based on Individual Compounds – Relative R-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  In 
most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 

 
Actual Predicted

Compound (Avg) (StDev)
1,1,2,2, Tetrachloroethylene (PCE) 0.00 0.00 -2.44
1,4 Dichlorophenoxyacetic Acid 84.43 5.57 83.49
17a Estradiol 14.61 12.71 16.91
2,3,4,5,6 Pentachlorophenol 26.23 8.79 23.23
2,4 Dinitrotoluene 0.00 0.00 1.68
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 76.39 7.29 77.77
4 Nonylphenol 29.81 16.92 26.83
4,6 Dichlorophenol 0.00 0.00 4.68
Alanine 85.64 4.72 82.22
Asparagine 61.55 4.97 64.01
Aspartic Acid 79.79 3.38 80.79
Benzene 0.00 0.00 2.46
beta Sitostanol n Hydrate 74.82 4.03 74.20
Bisphenol 75.39 5.14 74.45
Caffeine 67.84 2.79 68.49
Cholesterol 86.30 4.57 88.03
Cimetidine 59.98 11.52 62.29
Ciprofloxacin 81.28 6.81 82.21
Clorpyrifos 46.71 6.91 46.84
Codeine 75.59 7.17 76.11
Cysteine 87.30 2.36 86.50
Dichloroacetic Acid 65.41 5.54 67.59
Diethylphthalate 57.35 12.37 62.42
Diethylstilbestrol 52.14 10.64 50.95
Doxycycline 73.03 8.00 77.12
Erythromycin 87.61 0.82 87.94
Estrone 0.00 0.00 -1.54
Ethylbenzene 0.00 0.00 -4.96
Ethylenediaminetetraacetic Acid (EDTA) 86.87 4.09 88.17
Glycine 76.61 3.98 87.17
Histidine 83.76 2.77 83.38
Ibuprofen 85.67 1.55 86.27
Lindane 32.72 10.06 35.69
Lysine 85.46 2.94 84.53
Methionine 73.55 5.68 73.18
methyl Parathion 70.91 6.40 67.29
N-Dimethylamine 63.53 3.66 62.76
Nitrobenzene 0.00 0.00 -2.19
N-nitroso dimethyl amine (NDMA) 0.00 0.00 2.72
Phenanthrene 1.26 2.05 5.46
Phenol 0.23 0.51 -1.19
Phthalic Anhydride 88.41 2.09 88.36
Progesterone 66.06 21.78 69.81
t Butyl Alcohol 65.95 3.88 66.84
Testosterone 84.95 4.49 85.55
Tetracycline 82.62 5.08 83.45
Threonine 84.48 1.80 84.04
Toluene 0.00 0.00 -1.25
Trichloroacetic Acid 64.46 9.81 67.17
Urea 8.25 1.87 7.26
Valine 83.82 5.94 82.94

R-Flux
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 0.12 0.16 0.12
1,4 Dichlorophenoxyacetic Acid 9.96 6.65 7.33
17a Estradiol 0.77 0.65 0.58
2,3,4,5,6 Pentachlorophenol 2.27 2.22 1.72
2,4 Dinitrotoluene 3.03 1.62 2.76
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 1.77 1.09 1.51
4 Nonylphenol 0.31 0.08 0.45
4,6 Dichlorophenol 3.61 2.42 3.30
Alanine 14.25 5.25 16.43
Asparagine 18.20 10.27 12.98
Aspartic Acid 13.23 3.43 13.22
Benzene 22.60 5.08 20.79
beta Sitostanol n Hydrate 0.48 0.11 0.54
Bisphenol 1.67 1.39 1.18
Caffeine 16.97 4.25 20.08
Cholesterol 0.20 0.14 0.21
Cimetidine 11.84 8.06 9.39
Ciprofloxacin 6.72 4.48 6.24
Clorpyrifos 0.82 0.21 0.71
Codeine 10.98 4.74 11.13
Cysteine 12.83 5.83 9.99
Dichloroacetic Acid 24.44 6.66 23.83
Diethylphthalate 6.23 7.42 4.88
Diethylstilbestrol 0.12 0.09 0.14
Doxycycline 5.80 4.61 5.08
Erythromycin 3.29 0.92 3.33
Estrone 0.48 0.35 0.42
Ethylbenzene 2.57 0.87 2.61
Ethylenediaminetetraacetic Acid (EDTA) 9.35 4.88 8.77
Glycine 20.39 6.06 33.98
Histidine 15.30 3.16 14.13
Ibuprofen 6.78 4.99 5.07
Lindane 1.62 0.81 1.51
Lysine 11.43 4.25 10.41
Methionine 18.16 7.14 12.22
methyl Parathion 1.84 2.41 1.45
N-Dimethylamine 31.93 5.68 35.30
Nitrobenzene 0.38 0.10 0.37
N-nitroso dimethyl amine (NDMA) 81.54 4.79 67.55
Phenanthrene 0.46 0.16 0.47
Phenol 33.89 5.07 31.55
Phthalic Anhydride 7.27 2.93 7.53
Progesterone 0.09 0.11 0.21
t Butyl Alcohol 21.30 5.00 20.79
Testosterone 1.36 1.03 1.04
Tetracycline 4.24 2.31 3.40
Threonine 10.91 2.15 10.38
Toluene 9.62 6.58 5.76
Trichloroacetic Acid 23.30 8.47 22.09
Urea 90.57 6.53 75.25
Valine 16.93 7.82 16.93

P-Flux

Table 13a.  CA Performance Based on Individual Compounds – Relative P-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  
In most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 67.77 5.49 66.34
1,4 Dichlorophenoxyacetic Acid 5.30 1.07 6.40
17a Estradiol 97.52 0.53 97.45
2,3,4,5,6 Pentachlorophenol 97.77 0.30 97.69
2,4 Dinitrotoluene 92.94 0.85 93.28
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) N/A N/A N/A
4 Nonylphenol 95.98 3.64 98.57
4,6 Dichlorophenol 97.56 0.36 97.54
Alanine 6.78 1.42 8.33
Asparagine 0.73 0.19 0.64
Aspartic Acid 8.48 2.33 9.24
Benzene 43.42 3.24 44.79
beta Sitostanol n Hydrate 28.23 8.99 24.04
Bisphenol 99.11 0.07 97.96
Caffeine 10.09 0.58 11.46
Cholesterol 16.48 14.86 20.11
Cimetidine 21.67 2.42 21.54
Ciprofloxacin 27.03 5.33 24.20
Clorpyrifos 97.09 0.48 97.63
Codeine 26.16 3.05 27.10
Cysteine 9.37 2.37 6.61
Dichloroacetic Acid 6.23 1.02 5.87
Diethylphthalate 83.52 0.56 82.97
Diethylstilbestrol 99.74 0.06 99.37
Doxycycline 30.61 5.57 29.48
Erythromycin 8.28 1.56 6.06
Estrone 97.32 0.33 97.30
Ethylbenzene 66.72 8.20 68.70
Ethylenediaminetetraacetic Acid (EDTA) 7.52 1.90 7.05
Glycine 6.72 1.67 9.95
Histidine 8.82 0.95 8.06
Ibuprofen 20.45 2.15 23.00
Lindane 98.48 0.42 98.80
Lysine 9.30 1.02 9.55
Methionine 8.58 1.95 8.93
methyl Parathion 97.82 0.18 97.86
N-Dimethylamine 13.25 1.31 12.92
Nitrobenzene 73.09 3.84 63.65
N-nitroso dimethyl amine (NDMA) 3.51 0.11 3.67
Phenanthrene 99.57 0.05 99.65
Phenol 28.33 1.84 31.30
Phthalic Anhydride 6.22 1.19 5.34
Progesterone 98.51 0.21 98.63
t Butyl Alcohol 4.04 0.43 3.69
Testosterone 74.38 5.94 55.06
Tetracycline 14.42 2.76 15.49
Threonine 7.52 2.55 7.53
Toluene 52.21 3.16 48.83
Trichloroacetic Acid 4.19 0.43 4.60
Urea 3.08 0.35 4.59
Valine 5.64 1.67 4.93

M-Flux

Table 13b.  CA Performance Based on Individual Compounds – Relative M-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  
In most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 

 



 185

Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 1.44 1.99 6.04
1,4 Dichlorophenoxyacetic Acid 50.96 10.26 46.61
17a Estradiol 0.00 0.00 0.84
2,3,4,5,6 Pentachlorophenol 0.00 0.00 0.35
2,4 Dinitrotoluene 0.00 0.00 0.47
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) N/A N/A N/A
4 Nonylphenol 3.29 3.71 1.88
4,6 Dichlorophenol 0.00 0.00 -0.80
Alanine 39.33 7.76 40.05
Asparagine 34.30 4.39 42.86
Aspartic Acid 57.29 4.94 61.70
Benzene 0.00 0.00 1.48
beta Sitostanol n Hydrate 71.10 8.98 75.84
Bisphenol 0.00 0.00 0.21
Caffeine 14.37 3.17 15.14
Cholesterol 83.27 14.80 70.30
Cimetidine 18.44 6.38 22.86
Ciprofloxacin 37.85 7.65 24.76
Clorpyrifos 0.00 0.00 -0.19
Codeine 16.50 6.97 10.66
Cysteine 46.75 4.94 42.02
Dichloroacetic Acid 52.51 4.75 37.16
Diethylphthalate 0.00 0.00 0.22
Diethylstilbestrol 0.00 0.00 0.43
Doxycycline 51.36 6.91 53.97
Erythromycin 63.41 6.88 70.00
Estrone 0.00 0.00 -0.39
Ethylbenzene 9.13 10.19 1.42
Ethylenediaminetetraacetic Acid (EDTA) 44.42 6.49 45.09
Glycine 36.92 3.71 38.56
Histidine 45.89 3.20 44.55
Ibuprofen 21.57 7.70 22.96
Lindane 0.00 0.00 -0.22
Lysine 38.85 4.23 27.34
Methionine 44.49 4.88 39.66
methyl Parathion 0.00 0.00 -0.10
N-Dimethylamine 31.84 2.92 10.38
Nitrobenzene 0.00 0.00 0.80
N-nitroso dimethyl amine (NDMA) 2.44 4.67 3.67
Phenanthrene 0.00 0.00 0.97
Phenol 0.00 0.00 -0.34
Phthalic Anhydride 64.70 8.85 64.35
Progesterone 0.00 0.00 -0.28
t Butyl Alcohol 8.53 4.42 12.52
Testosterone 4.65 5.50 2.77
Tetracycline 53.32 8.11 57.31
Threonine 46.75 1.96 35.08
Toluene 0.00 0.00 2.04
Trichloroacetic Acid 35.70 5.25 39.79
Urea 6.34 2.36 28.21
Valine 31.64 6.68 34.09

R-Flux

Table 13c.  CA Performance Based on Individual Compounds – Relative R-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  
In most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 0.12 0.16 0.12
1,4 Dichlorophenoxyacetic Acid 9.96 6.65 7.33
17a Estradiol 0.77 0.65 0.58
2,3,4,5,6 Pentachlorophenol 2.27 2.22 1.72
2,4 Dinitrotoluene 3.03 1.62 2.76
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 1.77 1.09 1.51
4 Nonylphenol 0.31 0.08 0.45
4,6 Dichlorophenol 3.61 2.42 3.30
Alanine 14.25 5.25 16.43
Asparagine 18.20 10.27 12.98
Aspartic Acid 13.23 3.43 13.22
Benzene 22.60 5.08 20.79
beta Sitostanol n Hydrate 0.48 0.11 0.54
Bisphenol 1.67 1.39 1.18
Caffeine 16.97 4.25 20.08
Cholesterol 0.20 0.14 0.21
Cimetidine 11.84 8.06 9.39
Ciprofloxacin 6.72 4.48 6.24
Clorpyrifos 0.82 0.21 0.71
Codeine 10.98 4.74 11.13
Cysteine 12.83 5.83 9.99
Dichloroacetic Acid 24.44 6.66 23.83
Diethylphthalate 6.23 7.42 4.88
Diethylstilbestrol 0.12 0.09 0.14
Doxycycline 5.80 4.61 5.08
Erythromycin 3.29 0.92 3.33
Estrone 0.48 0.35 0.42
Ethylbenzene 2.57 0.87 2.61
Ethylenediaminetetraacetic Acid (EDTA) 9.35 4.88 8.77
Glycine 20.39 6.06 33.98
Histidine 15.30 3.16 14.13
Ibuprofen 6.78 4.99 5.07
Lindane 1.62 0.81 1.51
Lysine 11.43 4.25 10.41
Methionine 18.16 7.14 12.22
methyl Parathion 1.84 2.41 1.45
N-Dimethylamine 31.93 5.68 35.30
Nitrobenzene 0.38 0.10 0.37
N-nitroso dimethyl amine (NDMA) 81.54 4.79 67.55
Phenanthrene 0.46 0.16 0.47
Phenol 33.89 5.07 31.55
Phthalic Anhydride 7.27 2.93 7.53
Progesterone 0.09 0.11 0.21
t Butyl Alcohol 21.30 5.00 20.79
Testosterone 1.36 1.03 1.04
Tetracycline 4.24 2.31 3.40
Threonine 10.91 2.15 10.38
Toluene 9.62 6.58 5.76
Trichloroacetic Acid 23.30 8.47 22.09
Urea 90.57 6.53 75.25
Valine 16.93 7.82 16.93

P-Flux

Table 14a.  “Universal” PA Performance Based on Individual Compounds – Relative P-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  In 
most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 99.88 0.16 95.55
1,4 Dichlorophenoxyacetic Acid 9.20 5.53 7.65
17a Estradiol 79.01 12.26 88.30
2,3,4,5,6 Pentachlorophenol 56.87 10.66 55.61
2,4 Dinitrotoluene 96.97 1.62 98.89
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 15.81 8.44 14.15
4 Nonylphenol 37.73 21.69 33.54
4,6 Dichlorophenol 96.39 2.42 97.88
Alanine 5.05 1.43 4.40
Asparagine 4.62 2.33 3.78
Aspartic Acid 4.41 1.82 5.04
Benzene 73.05 8.78 74.11
beta Sitostanol n Hydrate 29.14 13.97 18.84
Bisphenol 23.49 7.61 21.31
Caffeine 18.09 5.53 16.70
Cholesterol 14.29 3.66 19.07
Cimetidine 25.66 7.99 25.86
Ciprofloxacin 15.98 10.89 11.68
Clorpyrifos 39.78 19.13 41.47
Codeine 28.52 15.54 28.03
Cysteine 7.52 3.48 6.06
Dichloroacetic Acid 8.05 1.15 7.46
Diethylphthalate 34.99 12.18 32.62
Diethylstilbestrol 31.28 14.19 27.74
Doxycycline 14.42 3.59 14.48
Erythromycin 9.59 3.02 9.15
Estrone 89.73 14.75 77.69
Ethylbenzene 97.43 0.87 95.58
Ethylenediaminetetraacetic Acid (EDTA) 4.05 3.51 3.56
Glycine 4.86 1.47 3.93
Histidine 6.67 1.88 6.98
Ibuprofen 10.97 4.17 9.92
Lindane 57.06 14.31 49.52
Lysine 4.00 2.07 3.88
Methionine 6.34 2.00 6.01
methyl Parathion 22.40 8.31 20.55
N-Dimethylamine 16.27 11.18 14.10
Nitrobenzene 99.62 0.10 97.53
N-nitroso dimethyl amine (NDMA) 13.80 7.76 12.02
Phenanthrene 95.65 7.42 94.79
Phenol 63.33 4.33 65.52
Phthalic Anhydride 2.81 1.09 2.90
Progesterone 29.83 12.10 28.97
t Butyl Alcohol 7.14 2.28 7.08
Testosterone 23.83 15.10 20.57
Tetracycline 14.66 5.24 14.16
Threonine 4.10 0.80 4.86
Toluene 90.38 6.58 90.38
Trichloroacetic Acid 6.28 2.96 5.51
Urea 3.28 6.95 2.21
Valine 5.83 2.36 6.39

M-Flux

Table 14b.  “Universal” PA Performance Based on Individual Compounds – Relative M-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  In 
most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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Actual Predicted
Compound (Avg) (StDev)

1,1,2,2, Tetrachloroethylene (PCE) 0.00 0.00 -3.28
1,4 Dichlorophenoxyacetic Acid 80.84 10.71 80.77
17a Estradiol 20.22 12.40 24.93
2,3,4,5,6 Pentachlorophenol 40.86 11.62 39.53
2,4 Dinitrotoluene 0.00 0.00 -2.48
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 83.40 9.75 85.37
4 Nonylphenol 61.96 21.67 68.02
4,6 Dichlorophenol 0.00 0.00 -3.38
Alanine 80.70 5.98 80.97
Asparagine 76.02 11.75 79.02
Aspartic Acid 82.35 4.43 80.64
Benzene 4.35 11.02 8.13
beta Sitostanol n Hydrate 70.39 14.02 70.10
Bisphenol 74.84 8.62 74.46
Caffeine 64.94 7.09 64.92
Cholesterol 85.52 3.61 85.63
Cimetidine 62.50 13.58 67.54
Ciprofloxacin 77.30 13.89 80.62
Clorpyrifos 59.40 19.01 62.81
Codeine 60.51 19.16 61.67
Cysteine 79.66 8.28 82.35
Dichloroacetic Acid 67.52 7.11 66.72
Diethylphthalate 59.93 13.26 61.30
Diethylstilbestrol 68.59 14.18 69.13
Doxycycline 79.78 6.37 78.59
Erythromycin 87.13 3.47 88.25
Estrone 9.79 14.57 32.56
Ethylbenzene 0.00 0.00 -4.95
Ethylenediaminetetraacetic Acid (EDTA) 86.60 7.35 85.89
Glycine 74.74 6.71 86.59
Histidine 78.03 4.39 78.75
Ibuprofen 82.25 8.85 82.17
Lindane 41.32 14.54 47.32
Lysine 84.57 5.68 84.69
Methionine 75.50 8.61 75.75
methyl Parathion 75.76 8.77 78.87
N-Dimethylamine 51.48 11.21 51.93
Nitrobenzene 0.00 0.00 -6.95
N-nitroso dimethyl amine (NDMA) 4.66 7.87 3.63
Phenanthrene 3.88 7.42 7.52
Phenol 2.78 4.75 3.93
Phthalic Anhydride 89.92 3.52 89.95
Progesterone 70.74 12.19 70.12
t Butyl Alcohol 71.56 6.33 71.30
Testosterone 74.81 15.77 75.39
Tetracycline 81.10 6.69 83.29
Threonine 84.99 2.32 82.90
Toluene 0.00 0.00 -4.88
Trichloroacetic Acid 70.42 10.12 73.92
Urea 6.15 3.74 4.50
Valine 77.24 9.08 76.44

R-Flux

Table 14c.  “Universal” PA Performance Based on Individual Compounds – Relative R-Flux 
The table shows how well compound behavior could be predicted by the ANN model.  In 
most cases, the model accurately predicted behavior. 
Actual = laboratory determination 
Predicted = ANN model prediction 
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HPB/CHGE = Hydrophobicity/Charge
HPB = Hydrophobicity
H-Bond = Hydrogen Bonding

Sensitivity Index
          P-Flux

BW-30 ESPA-2 LFC-1 TFC-HR "Univ" PA CA
MaxQp -0.38 -1.52

Py 0.26 0.14 0.77 -0.01
P 0.67 1.06

SsCH3 0.67 0.12 0.14
SdssC -0.08 -0.02 -0.61
Hmin 0.38 0.23 0.25

Ovality -0.17
Surface -0.18 -0.69

xpc4 0.46
xv1 -1.40

xvpc4 -0.72 -0.50 0.39 -0.69
nxp5 0.01

Iy -1.03 0.49
fw -0.60

HPB/CHGE Qsv 0.77

HPB LogP -0.01 -0.32 -0.35 -0.24 -0.99

H-Bond numHBa 1.32 0.39 0.23 0.00
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Table 15a.  Analysis of Influence – Sensitivity Index for Relative P-Flux
The table represents a summary of input parameters that were influential in the model.  The index 
represents the magnitude and direction of strength of influence of each input on the model output.
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Sensitivity Index
           M-Flux

BW-30 ESPA-2 LFC-1 TFC-HR "Univ" PA CA
MaxQp 2.19

P -0.64 -0.20 -0.64 0.44 -0.24 2.01
Q 0.47 0.98

SaaCH 0.48 3.30
SdssC -0.31 -0.37 1.23
Gmax 0.01
Gmin 0.79 0.56 1.30 1.51 0.52

nxch6 0.76
k1 -1.67

idcbar -1.28

fw 1.20 0.66 -0.65

HPB/CHGE Qs 1.40 1.92

HPB LogP 0.37 -0.10 0.70 1.25

H-Bond numHBa 0.21 0.76 0.18 1.20
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HPB/CHGE = Hydrophobicity/Charge
HPB = Hydrophobicity
H-Bond = Hydrogen Bonding

Table 15b.  Analysis of Influence – Sensitivity Index for Relative M-Flux
The table represents a summary of input parameters that were influential in the model.  The index represents 
the magnitude and direction of strength of influence of each input on the model output.
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HPB/CHGE = Hydrophobicity/Charge
HPB = Hydrophobicity
H-Bond = Hydrogen Bonding

      Sensitivity Index
                 R-Flux

BW-30 ESPA-2 LFC-1 TFC-HR "Univ" PA CA
ABSQ 0.76

MaxNeg 0.04
Py -0.83
Pz -0.47
Q -1.61 -0.33 -1.65 -1.24 -0.83

SaaCH -2.70 -0.38
SdssC -3.11 -0.49 -0.75

SdO 0.03
Gmax -0.52 0.01 -0.45
Gmin -2.13 -2.15 -0.34 -1.38 -0.09

nxch6 0.21 0.86

sumdelI -0.32 -0.30

Wt -6.11 22.70

k2 0.33 1.58

k3 -0.04
idcbar 1.34

HPB LogP -1.02 -0.55 -0.63

H-Bond numHBa -1.48 -0.68 -1.43 -0.80
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Table 15c.  Analysis of Influence – Sensitivity Index for Relative R-Flux
The table represents a summary of input parameters that were influential in the model.  The index 
represents the magnitude and direction of strength of influence of each input on the model output.
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Compound Name P-Flux M-Flux R-Flux F-Flux
1,1,2 Trichloroethene (TCE) 4.04 92.54 21.20 117.78
1,1,2,2 Tetrachloroethane 0.09 92.35 0.00 92.44
1,1,2,2, Tetrachloroethylene (PCE) 0.09 93.76 0.00 93.85
1,2 Dichlorobenzene 1.23 94.17 2.00 97.41
1,2 Dimethylbenzene 3.96 97.75 0.00 101.70
1,2,4 Trimethylbenzene 0.12 100.84 0.00 100.96
1,3,5 Trimethylbenzene 1.00 100.27 0.00 101.28
1,4 Dichlorobenzene 1.93 100.11 0.52 102.56
1,4 Dichlorophenoxyacetic Acid 11.12 6.07 81.08 98.27
17a Estradiol 0.18 77.02 29.32 106.52
2,2 bis-p-Chlorophenyl 1,1 Dichloroethane 0.51 21.66 71.86 94.03
2,2 bis-p-Chlorophenyl 1,1,1 Trichloroethane 3.26 45.96 72.46 121.69
2,2 bis-p-Methoxyphenyl 1,1,1 Trichloroethane 9.64 34.09 72.19 115.92
2,2,2 Trichloro 1,1-bis-4-chlorophenyl Ethanol 0.85 37.13 71.60 109.58
2,3 Naphthalenedicarboxylic Acid 15.65 9.68 90.42 115.74
2,3,4,5,6 Pentachlorophenol 0.37 53.23 53.52 107.13
2,3,5,6 Tetrachloroterephthalic Acid 0.92 17.68 68.40 87.00
2,4 Dichloro-4'-nitrodiphenyl Ether 10.54 37.38 75.16 123.08
2,4 Dinitrotoluene 4.06 95.97 8.41 108.44
2,4,5 Trichlorophenoxyacetic Acid 6.57 16.63 73.24 96.44
2,6 bis-1,1 Dimethylethyl 2,5 Cyclohexadiene 1,4 dione 22.48 21.72 54.10 98.29
2,6 bis-1,1 Dimethylethyl Phenol 0.42 31.03 70.31 101.76
2,6 di-tert-butyl-p-Cresol 1.84 30.17 74.91 106.91
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 0.44 4.47 94.03 98.93
3 Hydroxycarbofuran 0.77 95.32 94.98 113.40
3,4,5,6,7,8,8a-Heptachlorodicyclopentadiene 0.30 2.69 19.81 115.43
3-amino-1H-1,2,4 Triazole 6.97 17.65 81.25 90.91
4 Nonylphenol 0.25 35.99 63.88 100.12
4,6 Dichlorophenol 7.63 96.83 0.00 104.46
5-methyl-1H-Benzotriazole 6.29 71.15 33.56 111.01
Acetaminophen 6.44 66.99 3.34 76.78
Alanine 12.74 5.57 79.84 98.15
Aldicarbsulfone 21.63 8.85 86.28 116.76
alpha-naphthyl-N-Methylcarbamate 8.14 4.99 81.67 94.80
Androsterone 0.24 18.06 95.88 114.18
Anthracene 0.09 99.68 12.48 112.25
Asparagine 9.47 2.66 91.74 103.87
Aspartic Acid 14.32 4.90 82.57 101.80
Atrazine 3.59 110.61 34.50 148.70
Benzene 24.97 79.34 0.00 104.32
benzo-e-1,3,2 Dioxathiepin-3-oxide 4.45 4.47 94.70 103.61
beta Sitostanol n Hydrate 0.45 16.59 73.77 90.80
beta-Estradiol 0.24 72.30 33.22 105.76
bis-2-Ethylhexyl-adipate 53.38 49.91 0.00 103.29
Bisphenol 2.69 28.63 65.81 97.14
Bromochloroacetic Acid 5.26 15.70 87.76 108.72
Bromochloromethane 89.81 10.36 15.85 116.02
Caffeine 17.61 13.06 69.59 100.26
Chloralhydrate 0.53 6.99 71.24 78.76

Table 16a.  Final Relative Flux Model Outputs for BW-30 
The predicted values represent a 25% noise-band criteria. Bolded compounds represent 
surrogates used to build the models 
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Compound Name P-Flux M-Flux R-Flux F-Flux
Chlorotetracycline 0.46 4.76 86.21 91.44
Chlorpyrifos 0.80 20.17 71.33 92.96
Cholesterol 0.09 14.46 87.46 107.72
Cimetidine 7.80 2.41 79.85 102.11
Ciprofloxacin 1.51 52.82 92.20 96.12
Codeine 7.15 10.35 77.34 94.83
Cylindrospermopsin 6.63 3.83 91.02 101.48
Cymene 0.68 102.20 0.00 102.88
Cysteine 16.20 7.82 76.79 100.81
Diazinon 4.40 20.69 96.52 121.60
Dibromoacetatic Acid 1.72 10.36 78.09 90.17
Dibromoacetonitrile 9.57 96.12 0.00 105.69
Dibromochloropropane 0.43 113.67 0.00 114.10
Dichloroacetic Acid 14.65 8.62 75.43 98.71
Dichlorodiphenyldichloroethylene 2.55 15.64 79.24 97.43
Dieldrin 0.04 11.34 94.96 106.34
Diethylphthalate 5.76 28.67 59.64 94.07
Diethylstilbestrol 0.10 33.85 67.32 101.27
Digoxigenin 0.91 2.58 81.64 85.14
Digoxin 4.00 2.15 73.73 79.88
Disulfoton 0.19 3.89 96.58 100.66
Diuron 63.78 14.05 2.64 80.48
d--n-Butylphthalate 0.40 42.25 67.47 110.13
d--n-Octylphthalate
Doxycycline 4.14 10.67 85.33 100.14
Enalaprilat 0.44 8.32 92.11 100.86
Endosulfansulfate 0.06 29.66 93.66 123.37
Enrofloxacin 3.18 3.81 89.40 96.39
Equilenin 0.23 37.29 42.95 80.48
Erythromycin 3.72 5.36 91.16 100.24
Estriol 0.03 23.38 94.26 117.68
Estrone 0.59 68.57 28.69 97.85
Ethylbenzene 4.50 98.43 0.00 102.94
Ethylenediaminetetraacetic Acid (EDTA) 5.09 2.46 91.11 98.66
Fluoranthrene 0.08 67.44 19.06 86.58
Fluoxetine 0.37 30.42 90.00 120.78
Fonofos 0.22 8.93 72.71 81.86
Gemfibrozil 14.06 24.82 72.36 111.25
Glycine 6.12 4.19 87.92 98.23
Hexachlorobutadiene 10.41 70.90 39.32 120.63
Histidine 15.61 7.29 76.70 99.60
Ibuprofen 15.83 19.16 65.88 100.87
Lincomycin 3.13 3.87 91.88 98.89
Lindane 1.93 62.01 24.78 88.72
Linuron 42.07 16.36 26.34 84.76
Lysine 13.88 2.96 82.97 99.82
Mestranol 0.18 21.97 83.41 105.56
Methionine 25.39 5.60 64.32 95.32
methyl Parathion 1.19 18.28 86.03 105.49

Table 16b.  Final Relative Flux Model Outputs for BW-30 
 (Continued – See Table 16a) 
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Compound Name P-Flux M-Flux R-Flux F-Flux
Microcystin LR 13.43 5.68 79.75 98.86
Molinate 24.63 36.94 31.17 92.74
Monobromobenzene 1.47 91.80 0.00 93.27
Nitrobenzene 0.39 97.42 0.00 97.81
Nitrosodibutylamine 12.51 73.14 1.88 87.52
N-nitroso dimethyl amine (NDMA) 101.35 18.90 31.79 152.04
Norethindrone 0.10 55.90 25.64 81.64
Norf loxacin 1.87 2.59 92.71 97.17
N-triacetic Acid 27.30 3.61 85.39 116.30
o-Cresol 11.18 83.52 13.24 107.94
Octachloro-4-7-methanotetrahydroindane 0.07 24.70 91.90 116.67
Octachloroepoxide 0.42 25.49 86.70 112.60
Paraxanthine 22.33 10.62 79.02 111.97
Paroxetine 0.64 23.25 83.20 107.09
p-Cresol 2.68 67.97 8.39 79.03
p-Dichlorobenzene 2.00 100.11 0.52 102.62
Perchloric Acid 11.35 8.47 74.43 94.25
Phenanthrene 0.27 100.45 12.63 113.35
Phenol 33.46 60.66 2.68 96.79
Phenylalanine 34.59 11.75 40.71 87.06
Phthalic Anhydride 5.58 1.96 91.30 98.84
Progesterone 0.06 28.41 77.15 105.61
Pyrene 0.14 92.92 18.31 111.37
Saxitoxin 3.32 1.37 92.84 97.54
Serine 28.23 2.31 85.65 116.18
Sulfachlorpyridazine 1.85 8.38 79.70 89.94
Sulfadimethoxine 4.12 10.76 83.37 98.25
Sulfamerazine 0.58 9.08 84.60 94.26
Sulfamethazine 2.28 11.91 82.96 97.16
Sulfamethizole 2.36 8.53 88.97 99.86
Sulfamethoxazole 2.52 7.29 82.42 92.23
Sulfathiazole 1.25 7.13 82.91 91.29
t Butyl Alcohol 19.63 6.80 78.13 104.56
Terbufos 2.58 15.06 74.10 91.74
Terramycin 4.33 12.58 86.59 103.50
tert amyl methyl Ether 0.65 112.67 0.00 113.32
Testosterone 0.87 13.49 87.55 101.91
Tetracycline 3.32 8.63 86.62 98.57
Threonine 9.01 5.92 83.13 98.06
Toluene 1.41 94.23 0.00 95.63
Tributyl Tin 0.15 64.74 54.28 119.17
Trichloroacetic Acid 22.80 7.05 63.68 93.52
Trimethoprim 7.36 18.51 95.68 121.55
triphenyl Phosphate 1.96 13.45 91.86 107.27
tris 2 Chloroethyl Phosphate 4.05 2.93 95.96 102.95
Tylosin 7.75 16.17 97.15 121.06
Urea 96.32 1.68 4.12 102.13
Valine 21.39 8.57 70.71 100.67

Table 16c.  Final Relative Flux Model Outputs for BW-30 
(Continued – See Table 16b) 
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Compound Name P-Flux M-Flux R-Flux F-Flux
1,1 Dichloropropanone 14.82 42.67 33.24 90.73
1,1,2 Trichloroethene (TCE) 19.57 93.57 11.14 124.28
1,1,2,2, Tetrachloroethylene (PCE) 0.29 96.26 -2.36 94.19
1,2 Dichlorobenzene 6.24 89.24 -1.78 93.70
1,2 Dimethylbenzene 2.98 87.66 -5.39 85.25
1,2,4 Trimethylbenzene 0.86 92.70 -6.13 87.43
1,3,5 Trimethylbenzene 1.63 95.86 -5.02 92.47
1,4 Dichlorobenzene 5.38 90.75 -4.85 91.28
1,4 Dichlorophenoxyacetic Acid 14.64 18.06 66.00 98.69
17a Estradiol 1.84 90.12 15.35 107.31
2,3 Naphthalenedicarboxylic Acid 2.93 2.68 79.80 85.40
2,3,4,5,6 Pentachlorophenol 2.60 47.44 52.89 102.93
2,3,5,6 Tetrachloroterephthalic Acid 3.24 14.28 75.26 92.78
2,4 Dinitrotoluene 3.44 103.20 3.88 110.52
2,4,5 Trichlorophenoxyacetic Acid 10.13 13.95 56.28 80.36
2,6 Naphthalenedicarboxylic Acid 2.20 3.68 74.88 80.76
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 2.55 19.66 77.40 99.62
3 Hydroxycarbofuran 1.57 102.82 60.74 77.06
4 Nonylphenol 0.13 20.79 78.85 99.77
4,6 Dichlorophenol 3.31 97.69 0.07 101.06
4-amino-6-tert-butyl-3-methylthio-as-triazin-5,4H-one 20.88 6.13 70.65 97.66
Acetochlor 8.09 12.85 80.83 101.77
Alanine 14.96 5.69 76.28 96.93
Aldicarbsulfone 2.74 5.16 69.22 77.12
alpha-naphthyl-N-Methylcarbamate 0.84 27.61 77.57 106.01
Anthracene 0.45 86.36 14.71 101.52
Asparagine 22.17 7.64 73.00 102.81
Aspartic Acid 18.82 3.05 76.75 98.62
Benzene 30.72 78.22 -2.55 106.39
benzo-a-Pyrene 0.01 74.12 18.06 92.20
benzo-e-1,3,2 Dioxathiepin-3-oxide 18.74 9.10 81.43 109.28
beta Sitostanol n Hydrate 0.47 49.82 59.95 110.24
beta-Estradiol 1.99 88.94 30.65 121.58
bis-2-Ethylhexyl-adipate 3.55 6.77 79.05 89.37
Bisphenol 2.00 24.05 69.88 95.93
Bromochloroacetonitrile 24.65 63.98 32.48 121.10
Bromochloromethane 11.43 27.47 63.48 102.38
Bromomethane 17.41 9.35 49.51 76.27
Butylated-Hydroxyanisole 0.25 50.09 31.89 82.24
Caffeine 19.64 17.74 59.49 96.87
Chloralhydrate 6.97 8.47 89.52 104.96
Chlorpyrifos 0.71 21.43 43.86 106.55
Cholesterol 0.03 40.06 76.24 97.70

Table 17a.  Final Model Output for ESPA-2 
The predicted values represent a 25% noise-band criteria.  Bolded compounds represent 
surrogates used to build the models 
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Compound Name P-Flux M-Flux R-Flux F-Flux
Cimetidine 16.21 18.84 44.47 100.74
Ciprofloxacin 11.67 96.98 69.51 100.02
Codeine 15.88 48.31 36.50 100.70
Cymene 0.24 96.65 14.69 111.58
Cysteine 8.36 6.21 83.09 97.66
Dibromoacetatic Acid 32.76 8.99 66.79 108.54
Dichloroacetic Acid 30.56 7.60 58.63 96.78
Dichloroacetonitrile 19.15 42.16 39.77 101.08
Dichlorodiphenyldichloroethylene 0.61 38.09 78.66 117.36
Dichloropropane 4.02 47.19 33.88 85.09
Diethylphthalate 5.91 31.95 63.20 101.06
Diethylstilbestrol 0.15 16.59 81.93 98.68
Digoxigenin 1.35 29.53 89.12 120.00
Diltiazem 7.35 13.54 72.69 93.58
Dipropylthiocarbamic Acid-s-ethylester 5.68 11.30 91.28 108.25
di-sec-Octylphthalate 1.54 8.82 70.20 80.56
Diuron 3.96 16.08 60.35 80.39
d--n-Butylphthalate 3.70 33.82 71.57 109.08
d--n-Octylphthalate 0.06 9.29 74.83 84.17
Doxycycline 4.09 15.10 82.58 101.77
Enrofloxacin 2.61 18.73 69.09 90.44
Erythromycin 4.24 13.02 82.74 100.00
Estriol 8.38 68.32 26.36 103.06
Estrone 0.28 93.84 1.39 95.50
Ethylbenzene 2.63 88.96 -2.72 88.87
Ethylenediaminetetraacetic Acid (EDTA) 13.69 8.02 74.29 96.01
Fluoranthrene 0.15 87.71 13.32 101.17
Fonofos 0.16 10.20 108.88 119.24
Gemfibrozil 6.21 11.45 83.44 101.09
Glycine 25.22 4.69 79.11 109.01
Hexachlorobenzene 0.01 89.30 18.07 107.38
Histidine 13.00 8.12 77.22 98.33
Ibuprofen 4.51 8.84 82.48 95.83
Leucine 4.53 7.56 77.42 89.52
Lindane 2.34 56.03 40.32 98.68
Lysine 14.75 9.25 81.25 105.25
Mestranol 0.82 16.83 106.34 123.99
Methionine 16.95 18.83 55.26 91.04
methyl Parathion 1.54 25.00 69.41 95.94
Methylene Bromide 6.78 72.64 45.07 124.48
Metribuzin 20.87 6.12 70.58 97.58
Molinate 1.31 47.26 71.99 120.55

Table 17b.  Final Model Output for ESPA-2 
(Continued – See Table 17a) 
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Compound Name P-Flux M-Flux R-Flux F-Flux
Monobromobenzene 6.24 76.75 11.34 94.32
N-Dimethylamine 34.94 21.84 42.84 99.62
Nitrobenzene 0.47 97.58 -3.05 95.00
Nitrosodibutylamine 2.73 36.12 63.27 102.12
N-nitroso dimethyl amine (NDMA) 71.97 13.32 6.45 91.73
N-nitrosodi-n-butylamine 3.81 41.82 59.18 104.81
Norf loxacin 6.39 11.60 67.80 85.79
o-Cresol 5.70 75.39 10.57 91.66
Paraxanthine 17.18 12.20 60.94 90.32
p-Cresol 4.92 71.71 7.43 84.06
p-Dichlorobenzene 5.38 90.75 -4.85 91.28
Phenanthrene 0.55 84.54 14.04 99.12
Phenol 27.89 63.55 10.55 102.00
Phthalic Anhydride 7.08 3.11 90.53 100.72
Progesterone 0.21 32.75 65.15 98.11
Pyrene 0.27 89.48 22.23 111.98
s-1-Methyl-5-3-Pyridinyl-2-Pyrrolidinone 3.96 39.80 62.09 105.85
Salbutamol 10.84 5.46 68.81 85.12
Saxitoxin 8.25 48.12 65.29 121.66
Serine 21.86 5.80 85.84 113.50
Sulfachlorpyridazine 2.11 42.31 70.01 114.43
Sulfadimethoxine 2.89 46.65 58.41 107.95
Sulfamerazine 1.37 26.22 74.61 102.20
Sulfamethazine 2.60 26.69 77.32 106.62
Sulfamethoxazole 1.35 31.30 73.11 105.76
Sulfathiazole 2.42 35.22 74.96 112.60
t Butyl Alcohol 17.89 5.50 79.67 103.06
Terbufos 1.40 18.53 73.79 93.71
Terramycin 8.95 18.08 74.69 101.72
Testosterone 2.31 28.66 70.40 101.37
Tetracycline 5.82 17.15 75.41 98.39
Thio-N-methyl-carbamoyl-oxy-methylester 18.75 4.64 66.30 89.68
Threonine 11.59 4.77 83.70 100.06
Toluene 6.60 84.41 7.43 98.44
Trichloroacetic Acid 20.20 7.78 71.78 99.77
Triclosan 1.00 25.09 72.65 98.74
Trimethoprim 5.57 50.05 56.41 112.03
triphenyl Phosphate 0.78 10.68 90.90 102.35
tris 2 Chloroethyl Phosphate 1.24 33.95 53.03 88.21
Tylosin 5.45 11.28 72.09 88.82
Urea 84.52 3.22 5.69 93.44
Valine 17.16 7.46 79.31 103.93

Table 17c.  Final Model Output for ESPA-2 
(Continued – See Table 17b) 

 



 198

Compound Name P-Flux M-Flux R-Flux F-Flux
1,1 Dichloropropanone 19.68 21.24 61.57 102.49
1,1,2 Trichloroethene (TCE) 6.54 69.36 34.08 109.98
1,1,2,2 Tetrachloroethane 0.11 92.52 16.02 108.65
1,1,2,2, Tetrachloroethylene (PCE) 0.11 96.99 -2.58 94.52
1,2 Dimethylbenzene 1.46 93.81 -19.89 75.37
1,2,4 Trimethylbenzene 1.04 102.38 -16.39 87.04
1,3,5 Trimethylbenzene 0.24 105.35 -19.54 86.06
1,4 Dichlorophenoxyacetic Acid 4.52 3.68 90.28 98.48
17a Estradiol 0.89 72.51 32.61 106.01
2,3 Naphthalenedicarboxylic Acid 11.25 4.01 81.66 96.93
2,3,4,5,6 Pentachlorophenol 0.82 56.12 37.65 94.59
2,3,5,6 Tetrachloroterephthalic Acid 13.53 6.07 99.68 119.28
2,4 Dinitrophenol 2.46 56.64 44.18 103.28
2,4 Dinitrotoluene 1.89 100.87 1.75 104.51
2,4,5 Trichlorophenoxyacetic Acid 3.27 3.47 82.31 89.05
2,6 Naphthalenedicarboxylic Acid 3.89 5.49 82.51 91.89
3 Hydroxycarbofuran 5.37 101.27 74.71 94.32
3-amino-1H-1,2,4 Triazole 23.60 14.25 0.29 120.03
4 Nonylphenol 0.37 24.07 76.99 101.44
4,6 Dichlorophenol 1.72 97.84 6.22 105.77
Alanine 15.11 6.50 76.08 97.69
Aldicarbsulfone 12.54 1.53 75.89 89.97
Aldrin 0.98 6.86 67.59 75.43
Anthracene 0.55 96.14 -10.69 85.99
Asparagine 12.06 5.73 83.17 100.97
Aspartic Acid 8.31 4.63 87.17 100.11
Benzene 16.21 69.75 12.98 98.95
benzo-e-1,3,2 Dioxathiepin-3-oxide 0.11 24.62 81.18 105.90
beta Sitostanol n Hydrate 0.31 13.78 85.52 99.61
Bisphenol 0.96 15.61 84.03 100.60
Bromochloroacetonitrile 46.44 10.58 67.87 124.90
Bromodichloromethane 5.39 26.54 72.32 104.25
Bromomethane 13.86 5.33 75.90 95.10
Caffeine 17.01 22.36 72.39 111.75
Carbadox 1.87 29.58 73.90 105.36
Chloroform 11.08 30.80 56.31 98.19
Chlorotetracycline 0.96 19.34 100.87 121.17
Chlorpyrifos 1.12 12.00 76.80 96.80
Cholesterol 0.24 26.25 87.83 100.07

Table 18a.  Final Model Output for LFC-1 
The predicted values represent a 25% noise-band criteria.  Bolded compounds represent 
surrogates used to build the models 
  

 



 199

Compound Name P-Flux M-Flux R-Flux F-Flux
Cimetidine 4.78 32.59 63.65 94.68
Ciprofloxacin 7.97 12.26 62.14 102.70
Codeine 10.85 37.98 46.74 95.57
Cylindrospermopsin 9.11 0.60 84.36 94.07
Cymene 0.78 96.22 26.58 123.58
Cysteine 15.33 6.74 80.05 102.12
Dibromoacetatic Acid 18.00 6.18 80.90 105.08
Dibromochloropropane 1.20 28.54 50.91 80.65
Dichloroacetic Acid 26.75 7.57 75.94 110.26
Dichloroacetonitrile 8.21 1.44 71.71 81.36
Dichloropropane 8.76 18.13 66.38 93.27
Diethylphthalate 5.50 29.19 64.57 99.26
Diethylstilbestrol 0.15 18.62 80.44 99.21
Dipropylthiocarbamic Acid-s-ethylester 2.85 9.86 87.52 100.23
Disulfoton 1.09 11.59 93.07 105.75
Doxycycline 5.74 16.43 79.40 101.58
Enalaprilat 0.88 26.36 74.00 101.23
Enrofloxacin 3.38 32.41 54.77 90.56
Equilenin 0.84 56.31 56.24 113.39
Equilin 0.24 55.91 27.29 83.45
Erythromycin 2.78 8.30 90.00 101.08
Estrone 0.90 74.58 18.65 94.13
Ethylbenzene 1.95 85.79 -2.06 85.68
Ethylenediaminetetraacetic Acid (EDTA) 7.21 2.12 92.16 101.50
Gemfibrozil 1.61 16.78 94.10 112.48
Glycine 26.60 4.91 76.65 108.15
Hexachlorobutadiene 6.90 32.88 69.69 109.46
Histidine 19.26 7.09 75.48 101.83
Ibuprofen 5.25 8.78 85.14 99.18
Lincomycin 0.11 0.85 87.68 88.65
Lindane 1.09 40.88 61.22 103.19
Linuron 2.00 12.19 78.01 92.20
Lysine 5.85 1.40 91.00 98.26
Methionine 10.56 4.53 84.79 99.88
methyl Parathion 1.14 25.75 75.01 101.90
Methylene Bromide 20.15 33.44 70.36 123.95
Methylene Chloride 14.91 7.64 70.67 93.22
Microcystin LR 3.08 13.72 105.68 122.48
N-Dimethylamine 28.76 29.10 39.43 97.29

Table 18b.  Final Model Output for LFC-1 
(Continued – See Table 18a) 
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Compound Name P-Flux M-Flux R-Flux F-Flux
Nitrilotriacetic Acid 3.44 6.34 102.92 112.70
Nitrobenzene 0.29 90.41 -2.69 88.00
N-nitroso dimethyl amine (NDMA) 80.37 0.46 18.60 99.43
Norethindrone 0.17 53.32 63.79 117.28
Norfloxacin 8.38 25.64 51.13 85.15
N-triacetic Acid 0.43 5.85 96.32 102.61
o-Cresol 14.48 95.55 -0.03 110.00
Paraxanthine 10.37 17.39 77.01 104.77
Paroxetine 0.64 17.64 78.53 96.81
p-Cresol 34.87 72.70 -3.43 104.14
Phenanthrene 0.72 97.55 -4.09 94.18
Phenol 39.54 61.98 -1.45 100.07
Phenylalanine 34.30 3.56 58.11 95.97
Phthalic Anhydride 5.59 3.16 90.03 98.78
Progesterone 0.01 22.68 80.95 103.63
Pyrene 0.57 102.02 -26.66 75.92
Saxitoxin 2.09 9.52 82.08 93.69
Serine 34.22 2.72 80.40 117.35
Sulfachlorpyridazine 3.51 17.56 51.27 72.33
Sulfadimethoxine 3.42 26.49 62.32 92.23
Sulfamethazine 2.35 28.12 48.85 79.31
Sulfamethizole 15.24 13.65 84.93 113.82
Sulfamethoxazole 6.40 18.53 60.94 85.86
Sulfathiazole 4.56 20.90 80.74 106.19
t Butyl Alcohol 22.32 5.96 66.91 95.19
Terbacil 1.56 25.49 65.34 92.38
Terbufos 0.63 51.00 70.40 122.04
Terramycin 4.58 18.67 80.61 103.86
Testosterone 1.77 46.42 61.03 109.22
Tetracycline 3.33 16.99 78.49 98.81
Thio-N-methyl-carbamoyl-oxy-methylester 1.55 0.68 75.62 77.85
Threonine 11.86 3.54 80.51 95.91
Toluene 19.51 89.27 0.23 109.01
Tributyl Tin 0.78 2.31 96.50 99.59
Trichloroacetic Acid 12.65 1.68 82.86 97.20
tris 2 Chloroethyl Phosphate 2.52 19.73 92.71 114.96
Tylosin 0.71 38.11 68.20 107.02
Urea 85.33 1.70 4.38 91.41
Valine 12.29 4.21 83.59 100.09

Table 18c.  Final Model Output for LFC-1 
(Continued – See Table 18b) 
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Compound Name P-Flux M-Flux R-Flux F-Flux
1,1 Dichloropropanone 15.34 32.71 58.21 106.26
1,1,2,2 Tetrachloroethane 0.09 102.96 0.12 103.17
1,1,2,2, Tetrachloroethylene (PCE) 0.08 103.08 -2.44 100.72
1,3,5 Trimethylbenzene 0.10 86.66 -7.06 79.70
1,4 Dichlorophenoxyacetic Acid 5.04 8.58 83.49 97.11
17a Estradiol 0.37 75.07 16.91 92.35
2,2 bis-p-Chlorophenyl 1,1,1 Trichloroethane 0.48 9.53 77.47 87.48
2,2 bis-p-Methoxyphenyl 1,1,1 Trichloroethane 1.20 13.39 98.03 112.62
2,2,2 Trichloro 1,1-bis-4-chlorophenyl Ethanol 0.37 14.88 58.85 74.10
2,3 Naphthalenedicarboxylic Acid 2.52 4.00 78.47 85.00
2,3,4,5,6 Pentachlorophenol 5.74 73.84 23.23 102.82
2,4 Dinitrophenol 10.10 39.33 36.53 85.97
2,4 Dinitrotoluene 1.96 96.01 1.68 99.65
2,4,5 Trichlorophenoxyacetic Acid 9.33 9.15 74.91 93.39
2,6 bis-1,1 Dimethylethyl Phenol 0.09 26.31 52.45 78.85
2,6 di-tert-butyl-p-Cresol 0.12 35.36 40.35 75.82
2,6 Naphthalenedicarboxylic Acid 3.19 8.30 76.20 87.69
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 2.65 24.66 77.77 105.08
3 Hydroxycarbofuran 0.22 87.93 42.92 121.72
3-amino-1H-1,2,4 Triazole 12.35 78.57 1.20 119.60
4 Nonylphenol 0.22 70.73 26.83 97.78
4,6 Dichlorophenol 2.18 94.19 4.68 101.05
Acetaminophen 21.02 36.51 31.71 89.24
Alanine 9.73 5.41 82.22 97.35
Aldicarbsulfone 1.42 3.29 77.50 82.21
Aldrin 8.01 29.67 84.69 122.37
Anthracene 0.49 87.50 16.93 104.92
Asparagine 34.91 5.26 64.01 104.17
Aspartic Acid 12.00 5.32 80.79 98.11
Benzene 22.21 81.24 2.46 105.92
benzo-e-1,3,2 Dioxathiepin-3-oxide 9.17 24.11 83.96 117.23
beta Sitostanol n Hydrate 0.40 21.71 74.20 96.31
beta-Estradiol 0.38 62.55 17.25 80.19
Bisphenol 0.24 25.91 74.45 100.59
Bromochloroacetic Acid 9.97 14.08 69.30 93.35
Bromochloroacetonitrile 26.04 12.94 74.57 113.55
Bromochloromethane 21.17 11.48 62.77 95.42
Bromodichloromethane 18.55 9.18 59.89 87.61
Bromoform 0.28 45.88 51.00 97.17
Bromomethane 19.70 11.08 52.96 83.74
Butylated-Hydroxyanisole 0.19 37.37 39.50 77.06
Caffeine 17.20 17.06 68.49 102.75
Carbadox 9.71 40.91 71.49 122.11
Chloroform 26.18 19.04 56.20 101.42
Chlorpyrifos 0.75 14.79 46.84 103.46

Table 19a.  Final Model Output for TFC-HR 
The predicted values represent a 25% noise-band criteria.  Bolded compounds represent 
surrogates used to build the models 
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Compound Name P-Flux M-Flux R-Flux F-Flux
Cholesterol 0.34 25.32 88.03 103.17
Cimetidine 13.54 11.23 62.29 101.15
Ciprofloxacin 4.89 82.57 82.21 98.33
Codeine 7.39 20.50 76.11 104.00
Cyclotrimethylenetrinitramine 70.17 97.78 -54.30 113.65
Cylindrospermopsin 13.00 2.71 73.06 88.78
Cymene 0.08 74.55 35.94 110.57
Cysteine 7.75 5.58 86.50 99.83
Dibromoacetatic Acid 3.15 18.59 80.56 102.29
Dibromoacetonitrile 9.10 6.43 75.88 91.40
Dibromochloromethane 7.53 6.72 67.86 82.11
Dichloroacetic Acid 20.67 8.61 67.59 96.87
Dichlorodif luoromethane 21.72 13.90 61.43 97.06
Dichlorodiphenyldichloroethylene 16.63 58.94 36.15 111.71
Dichloropropane 15.01 28.69 76.99 120.69
Diethylphthalate 1.42 40.75 62.42 104.58
Diethylstilbestrol 0.15 54.06 50.95 105.16
Digoxigenin 0.57 47.26 58.85 106.68
Diltiazem 0.28 20.93 73.85 95.06
di-sec-Octylphthalate 0.18 23.09 82.66 105.93
Disulfoton 0.22 12.58 103.16 115.96
d--n-Octylphthalate 0.04 22.76 93.84 116.64
Doxycycline 8.58 15.54 77.12 101.24
Enalaprilat 0.33 15.50 76.88 92.70
Enrofloxacin 8.75 4.70 81.74 95.19
Erythromycin 2.54 10.48 87.94 100.95
Estrone 0.20 103.33 -1.54 101.99
Ethylbenzene 2.83 94.23 -4.96 92.10
Ethylenediaminetetraacetic Acid (EDTA) 11.30 2.28 88.17 101.76
ethyl-tert-Butyl Ether 18.66 10.21 84.91 113.77
exo-Dimethanonaphthalene 1.27 54.06 57.89 113.22
Fluoranthrene 1.85 87.29 -0.87 88.26
Fluoxetine 4.52 4.43 66.67 75.62
Fonofos 0.11 4.29 75.24 79.64
Gemfibrozil 4.17 9.43 84.61 98.21
Glycine 2.68 5.51 87.17 95.36
Hexachlorocyclohexane 0.40 77.22 10.65 88.27
Histidine 9.64 4.59 83.38 97.62
Ibuprofen 3.91 11.54 86.27 101.72
Leucine 6.54 7.22 94.32 108.07
Lincomycin 0.97 21.24 98.72 120.93
Lindane 1.00 66.21 35.69 102.91
Lysine 16.85 3.48 84.53 104.86
Metformin 63.82 31.44 13.44 108.71

Table 19b.  Final Model Output for TFC-HR 
(Continued – See Table 19a) 
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Compound Name P-Flux M-Flux R-Flux F-Flux
Methionine 17.45 5.07 73.18 95.70
methyl Parathion 3.28 22.48 67.29 93.05
Methylene Bromide 6.94 34.66 77.58 119.18
Methylene Chloride 39.50 19.71 44.93 104.15
methyl-tert-butyl Ether (MTBE) 21.96 8.90 76.90 107.76
Monobromobenzene 23.31 107.52 -54.30 76.53
N-Dimethylamine 35.24 7.62 62.76 105.62
Nitrilotriacetic Acid 3.27 5.57 78.56 87.39
Nitrobenzene 0.34 100.87 -2.19 99.02
N-nitroso dimethyl amine (NDMA) 74.72 20.80 2.72 98.24
N-nitrosomorpholine 17.18 28.14 30.68 76.00
Norethindrone 0.36 48.40 68.08 116.85
Norfloxacin 3.75 16.06 83.01 102.82
N-triacetic Acid 2.48 3.55 76.47 82.50
Octachloro-4-7-methanotetrahydroindane 4.71 49.51 70.66 124.88
Paraxanthine 5.69 13.90 58.57 78.16
Perchloric Acid 7.16 1.98 99.37 108.51
Phenanthrene 0.51 88.47 5.46 94.45
Phenol 32.48 61.87 -1.19 93.15
Phenylalanine 16.24 3.15 90.21 109.59
Phthalic Anhydride 8.20 3.06 88.36 99.62
Progesterone 0.17 26.30 69.81 96.28
Pyrene 1.29 87.34 -1.56 87.07
Salbutamol 14.32 8.40 80.01 102.73
Serine 7.00 5.68 80.18 92.87
Sulfachlorpyridazine 0.80 41.79 81.89 124.48
Sulfadimethoxine 1.19 12.36 85.35 98.89
Sulfamerazine 0.54 9.60 83.61 93.75
Sulfamethazine 0.80 9.80 86.30 96.90
Sulfathiazole 0.66 10.41 71.33 82.41
t Butyl Alcohol 19.14 8.47 66.84 94.46
Terramycin 2.26 23.38 80.83 106.47
tert amyl methyl Ether 7.73 9.28 76.61 93.62
Testosterone 0.33 14.39 85.55 100.27
Tetracycline 2.98 15.89 83.45 102.32
Thio-N-methyl-carbamoyl-oxy-methylester 8.26 18.42 80.19 106.88
Threonine 8.68 5.22 84.04 97.94
Toluene 7.12 93.08 -1.25 98.95
Tributyl Tin 0.08 2.31 98.08 100.47
Trichloroacetic Acid 28.16 6.18 67.17 101.51
Triclosan 18.33 32.78 61.95 113.06
triphenyl Phosphate 0.15 17.48 99.44 117.07
Urea 72.31 1.76 7.26 81.33
Valine 9.41 6.05 82.94 98.40

Table 19c.  Final Model Output for TFC-HR 
(Continued – See Table 19b) 
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Compound Name P-Flux M-Flux R-Flux F-Flux
1,1,2,2 Tetrachloroethane 32.88 64.71 5.31 102.89
1,1,2,2, Tetrachloroethylene (PCE) 30.91 66.34 6.04 103.29
1,2 Dichlorobenzene 13.09 86.00 -0.73 98.36
1,2,4 Trimethylbenzene 24.52 96.41 1.94 122.87
1,3,5 Trimethylbenzene 17.79 98.96 3.46 120.22
1,4 Dichlorobenzene 6.32 90.95 -0.57 96.71
1,4 Dichlorophenoxyacetic Acid 43.90 6.40 46.61 96.91
17a Estradiol 3.03 97.45 0.84 101.32
2,2 bis-p-Chlorophenyl 1,1,1 Trichloroethane 2.44 98.53 -2.07 98.90
2,3 Naphthalenedicarboxylic Acid 8.98 85.75 0.62 95.35
2,3,4,5,6 Pentachlorophenol 2.06 97.69 0.35 100.10
2,4 Dichloro-4'-nitrodiphenyl Ether 2.79 98.01 -1.18 99.62
2,4 Dinitrotoluene 7.90 93.28 0.47 101.64
2,6 bis-1,1 Dimethylethyl 2,5 Cyclohexadiene 1,4 dione 4.93 98.87 6.33 110.13
2,6 bis-1,1 Dimethylethyl Phenol 9.66 98.33 0.88 108.87
2,6 di-tert-butyl-p-Cresol 7.26 98.49 2.08 107.83
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 5.73 86.29 4.95 96.97
3-amino-1H-1,2,4 Triazole 77.12 54.36 9.79 90.23
4 Nonylphenol 0.54 98.57 1.88 100.99
4,6 Dichlorophenol 2.18 97.54 -0.80 98.91
4-amino-6-tert-butyl-3-methylthio-as-triazin-5,4H-one 50.52 62.28 0.23 113.03
Acetaminophen 88.96 28.10 0.76 117.82
Alanine 58.64 8.33 40.05 107.01
Aldicarbsulfone 73.16 31.81 12.56 117.53
Aldrin 14.72 93.59 2.07 110.38
alpha-naphthyl-N-Methylcarbamate 4.59 98.04 9.85 112.48
Androsterone 3.95 87.95 0.55 92.45
Anthracene 0.45 99.66 0.97 101.08
Asparagine 66.08 0.64 42.86 109.59
Aspartic Acid 35.62 9.24 61.70 106.55
Benzene 57.21 44.79 1.48 103.48
benzo-a-Pyrene 0.23 99.40 4.16 103.79
beta Sitostanol n Hydrate 0.53 24.04 75.84 100.42
bis-2-Ethylhexyl-adipate 5.10 97.77 0.87 103.74
Bisphenol 0.84 97.96 0.21 99.01
Butylated-Hydroxyanisole 11.79 98.90 2.30 113.00
Caffeine 70.35 11.46 15.14 96.96
Carbadox 2.17 82.21 1.58 85.96
Chloralhydrate 38.42 51.35 1.57 91.34
Chlorpyrifos 3.32 20.11 -0.19 100.76
Cholesterol 0.27 21.54 70.30 90.68

Table 20a.  Final Model Output for CA 
The predicted values represent a 25% noise-band criteria.  Bolded compounds represent 
surrogates used to build the models  
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Compound Name P-Flux M-Flux R-Flux F-Flux
Cimetidine 62.08 24.20 22.86 106.48
Ciprofloxacin 34.38 98.23 24.76 83.35
Codeine 55.86 27.10 10.66 93.62
Cymene 12.32 99.49 1.63 113.44
Cysteine 42.90 6.61 42.02 91.54
Diazinon 7.65 97.52 -1.34 103.83
Dibromoacetonitrile 58.43 33.98 16.00 108.42
Dichloroacetic Acid 44.11 5.87 37.16 87.13
Dichlorodif luoromethane 2.57 95.58 1.75 99.90
Dichlorodiphenyldichloroethylene 7.58 98.63 13.22 119.43
Diethylphthalate 15.81 82.97 0.22 99.00
Diethylstilbestrol 0.28 99.37 0.43 100.08
Diltiazem 5.25 95.30 -0.32 100.22
Dipropylthiocarbamic Acid-s-ethylester 13.74 89.44 7.33 110.51
di-sec-Octylphthalate 2.59 98.78 9.08 110.44
Diuron 30.36 69.47 7.30 107.12
d--n-Butylphthalate 0.36 69.10 12.77 82.23
d--n-Octylphthalate 0.24 87.88 22.22 110.34
Doxycycline 17.04 29.48 53.97 100.49
Enalaprilat 79.49 4.62 6.42 90.52
Endosulfansulfate 7.82 97.87 5.86 111.55
Enrof loxacin 13.30 43.41 28.45 85.16
Equilenin 1.42 97.55 4.97 103.95
Equilin 1.63 87.53 0.13 89.29
Erythromycin 29.37 6.06 70.00 105.43
Estriol 1.15 87.31 3.31 91.76
Estrone 2.56 97.30 -0.39 99.47
Ethylbenzene 25.86 68.70 1.42 95.98
Ethylenediaminetetraacetic Acid (EDTA) 47.11 7.05 45.09 99.26
Fluoranthrene 0.36 99.43 1.48 101.27
Fluoxetine 1.35 97.92 -1.93 97.34
Fonofos 5.03 97.71 0.44 103.17
Glycine 62.73 9.95 38.56 111.24
Hexachlorobenzene 2.74 99.67 -0.85 101.55
Histidine 44.17 8.06 44.55 96.78
Ibuprofen 57.58 23.00 22.96 103.54
Leucine 60.64 2.21 37.79 100.64
Lincomycin 51.04 23.24 12.59 86.86
Lindane 1.53 98.80 -0.22 100.11
Lysine 53.44 9.55 27.34 90.34

Table 20b.  Final Model Output for CA 
(Continued – See Table 20a) 
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Compound Name P-Flux M-Flux R-Flux F-Flux
Mestranol 1.68 98.14 0.24 100.07
Metformin 69.85 32.89 2.30 105.04
Methionine 48.80 8.93 39.66 97.40
methyl Parathion 1.86 97.86 -0.10 99.61
Metribuzin 50.49 62.26 0.22 112.97
N N diethyl 3 methylbenzamide 25.38 91.94 0.29 117.61
N-Dimethylamine 55.85 12.92 10.38 79.16
Nitrilotriacetic Acid 50.70 4.55 49.24 104.49
Nitrobenzene 35.98 63.65 0.80 100.43
Nitrosodiethylamine 57.49 19.87 8.70 86.07
N-nitroso dimethyl amine (NDMA) 90.16 3.67 3.67 97.50
N-nitrosomorpholine 29.62 33.98 9.73 73.33
N-nitrosopiperidine 39.06 20.47 12.29 71.81
Norf loxacin 34.01 67.82 11.89 113.71
N-triacetic Acid 66.99 4.26 33.92 105.17
o-Cresol 23.12 93.78 0.05 116.96
Paraxanthine 53.15 13.62 16.16 82.93
Paroxetine 1.39 98.99 0.49 100.88
p-Dichlorobenzene 6.32 90.95 -0.57 96.71
Phenanthrene 0.50 99.65 0.97 101.12
Phenol 71.96 31.30 -0.34 102.93
Phthalic Anhydride 28.58 5.34 64.35 98.27
Progesterone 1.68 98.63 -0.28 100.03
Pyrene 0.33 99.68 1.71 101.72
Salbutamol 75.08 31.51 3.65 110.25
Saxitoxin 39.84 54.89 7.91 102.64
Sulfamerazine 70.15 7.32 0.68 78.15
Sulfamethazine 49.20 22.93 2.80 74.93
t Butyl Alcohol 86.51 3.69 12.52 102.72
Terbufos 20.24 99.14 4.87 124.25
Testosterone 19.64 55.06 2.77 77.46
Tetracycline 37.95 15.49 57.31 110.75
Threonine 49.43 7.53 35.08 92.04
Toluene 46.90 48.83 2.04 97.76
Trichloroacetic Acid 55.91 4.60 39.79 100.31
Trimethoprim 12.12 66.48 41.94 120.54
triphenyl Phosphate 0.50 98.14 -1.50 97.13
tris 2 Chloroethyl Phosphate 2.23 96.31 1.67 100.20
Urea 91.95 4.59 28.21 124.75
Valine 61.69 4.93 34.09 100.71

Table 20c.  Final Model Output for CA 
(Continued – See Table 20b) 
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Compound Name P-Flux M-Flux R-Flux F-Flux
1,1 Dichloropropanone 3.57 23.46 57.76 84.78
1,1,2,2 Tetrachloroethane 0.12 95.55 1.14 96.81
1,1,2,2, Tetrachloroethylene (PCE) 0.12 95.55 -3.28 92.39
1,2 Dichlorobenzene 1.61 102.05 16.70 120.36
1,2 Dimethylbenzene 3.20 91.92 -8.47 86.65
1,2,4 Trimethylbenzene 6.31 100.40 -8.54 98.17
1,3,5 Trimethylbenzene 1.57 101.77 -8.54 94.80
1,4 Dichlorophenoxyacetic Acid 7.33 7.65 80.77 95.74
17a Estradiol 0.58 88.30 24.93 113.81
2,2 bis-p-Chlorophenyl 1,1 Dichloroethane 0.68 12.84 88.53 102.04
2,2 bis-p-Chlorophenyl 1,1,1 Trichloroethane 0.29 13.06 79.91 93.27
2,2 bis-p-Methoxyphenyl 1,1,1 Trichloroethane 0.33 7.82 93.66 101.80
2,2,2 Trichloro 1,1-bis-4-chlorophenyl Ethanol 0.75 36.48 79.90 117.12
2,3 Naphthalenedicarboxylic Acid 1.87 5.08 72.27 79.22
2,3,4,5,6 Pentachlorophenol 1.72 55.61 39.53 96.86
2,3,5,6 Tetrachloroterephthalic Acid 10.70 26.45 75.96 113.10
2,4 Dichloro-4'-nitrodiphenyl Ether 0.43 60.86 43.74 105.04
2,4 Dinitrotoluene 2.76 98.89 -2.48 99.17
2,4,5 Trichlorophenoxyacetic Acid 1.83 14.09 73.24 89.17
2,6 Naphthalenedicarboxylic Acid 1.67 12.48 72.32 86.47
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor) 1.51 14.15 85.37 101.03
3 Hydroxycarbofuran 2.19 97.55 80.60 90.45
4 Nonylphenol 0.45 33.54 68.02 102.00
4,6 Dichlorophenol 3.30 97.88 -3.38 97.80
6-chloro-N-ethyl-N'-isopropyl-1,3,5 Triazine-2,4-diamine 4.80 82.34 -9.79 77.34
Acetochlor 11.77 12.76 67.96 92.49
Alanine 16.43 4.40 80.97 101.80
Aldicarbsulfone 38.37 9.21 72.46 120.03
Aldrin 0.72 23.30 74.38 98.41
alpha-naphthyl-N-Methylcarbamate 11.43 48.93 60.69 121.05
Androsterone 0.39 33.46 43.83 77.69
Anthracene 0.42 95.91 5.91 102.23
Asparagine 12.98 3.78 79.02 95.78
Aspartic Acid 13.22 5.04 80.64 98.89
Atrazine 4.18 83.95 -7.85 80.28
Benzene 20.79 74.11 8.13 103.03
benzo-a-Pyrene 0.19 84.70 6.04 90.93
benzo-e-1,3,2 Dioxathiepin-3-oxide 14.62 2.98 64.78 82.38
beta Sitostanol n Hydrate 0.54 18.84 70.10 89.47
beta-Estradiol 0.29 88.77 26.86 115.92
Bisphenol 1.18 21.31 74.46 96.94
Bromochloroacetic Acid 2.81 11.65 62.45 76.91
Bromochloroacetonitrile 11.12 34.88 69.12 115.12
Bromodichloromethane 32.11 52.01 31.09 115.21
Bromoform 24.67 66.32 5.54 96.52
Caffeine 20.08 16.70 64.92 101.70
Chloralhydrate 9.47 6.21 71.50 87.18
Chloroform 36.59 39.01 33.19 108.79
Chlorpyrifos 0.71 19.07 62.81 104.99
Cholesterol 0.21 25.86 85.63 104.91
Cimetidine 9.39 11.68 67.54 102.79
Ciprofloxacin 6.24 50.80 80.62 98.53

Table 21a.  Final Model Output for “Universal” PA 
The predicted values represent a 25% noise-band criteria.  Bolded compounds 
represent surrogates used to build the models 
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Compound Name P-Flux M-Flux R-Flux F-Flux
Codeine 11.13 28.03 61.67 100.83
Cylindrospermopsin 2.96 15.48 84.32 102.77
Cymene 1.64 93.46 -10.39 84.72
Cysteine 9.99 6.06 82.35 98.39
Dibromoacetatic Acid 5.28 4.32 69.17 78.77
Dibromoacetonitrile 4.49 42.01 69.65 116.15
Dibromochloromethane 12.15 61.68 29.28 103.11
Dichloroacetic Acid 23.83 7.46 66.72 98.01
Dichloroacetonitrile 3.17 25.19 71.90 100.26
Dichloropropane 11.06 27.63 56.84 95.53
Dieldrin 0.86 9.21 91.26 101.33
Diethylphthalate 4.88 32.62 61.30 98.79
Diethylstilbestrol 0.14 27.74 69.13 97.00
Digoxigenin 1.80 2.70 72.19 76.69
Digoxin 3.26 28.42 79.32 111.00
Diltiazem 7.77 12.15 75.54 95.46
Disulfoton 1.81 13.67 85.98 101.47
Diuron 12.47 16.17 70.19 98.84
d--n-Butylphthalate 2.58 19.39 80.70 102.67
Doxycycline 5.08 14.48 78.59 98.15
Enalaprilat 8.74 1.90 83.14 93.78
Endosulfansulfate 0.73 59.18 46.75 106.65
Enrofloxacin 2.60 4.55 74.79 81.95
Equilenin 0.41 79.33 0.77 80.50
Erythromycin 3.33 9.15 88.25 100.73
Estriol 3.35 27.98 87.63 118.96
Estrone 0.42 77.69 32.56 110.67
Ethylbenzene 2.61 95.58 -4.95 93.24
Ethylenediaminetetraacetic Acid (EDTA) 8.77 3.56 85.89 98.22
ethyl-tert-Butyl Ether 46.45 63.46 -0.39 109.52
exo-Dimethanonaphthalene 7.28 24.45 88.09 119.83
Fluoranthrene 0.28 99.17 7.01 106.45
Fluoxetine 0.56 9.98 77.75 88.29
Fonofos 1.43 3.64 85.06 90.14
Glycine 33.98 3.93 86.59 124.50
Hexachlorobutadiene 0.21 103.90 -3.00 101.11
Hexachlorocyclohexane 7.29 98.91 -4.50 101.70
Histidine 14.13 6.98 78.75 99.86
Ibuprofen 5.07 9.92 82.17 97.15
Leucine 16.80 8.40 86.31 111.51
Lincomycin 7.41 14.33 85.48 107.22
Lindane 1.51 49.52 47.32 98.35
Linuron 4.93 29.94 65.54 100.41
Lysine 10.41 3.88 84.69 98.99
Mestranol 0.89 7.39 81.69 89.97
Methionine 12.22 6.01 75.75 93.97
methyl Parathion 1.45 20.55 78.87 100.88
Methylene Chloride 31.93 59.43 23.26 114.63
methyl-tert-butyl Ether (MTBE) 48.05 50.92 -0.47 98.50
Metolachlor 27.61 21.75 61.32 110.69

Table 21b.  Final Model Output for “Universal” PA 
(Continued – See Table 21a) 

 



 209

Compound Name P-Flux M-Flux R-Flux F-Flux
N N diethyl 3 methylbenzamide 37.29 6.06 48.87 92.21
N-Dimethylamine 35.30 14.10 51.93 101.33
Nitrilotriacetic Acid 11.20 6.53 88.64 106.37
Nitrobenzene 0.37 97.53 -6.95 90.95
Nitrosodibutylamine 34.40 64.15 -9.03 89.52
N-nitroso dimethyl amine (NDMA) 67.55 12.02 3.63 83.20
N-nitrosodi-n-butylamine 29.66 59.69 -3.09 86.25
N-nitrosopyrrolidine 25.28 4.74 83.64 113.66
Norethindrone 0.28 23.12 63.34 86.75
Norfloxacin 7.62 12.85 83.52 103.99
N-triacetic Acid 14.58 6.07 82.21 102.85
o-Cresol 5.87 82.85 3.55 92.26
Octachloro-4-7-methanotetrahydroindane 0.39 48.15 75.90 124.44
Octachloroepoxide 0.77 28.00 78.59 107.36
Paraxanthine 12.22 15.03 56.47 83.71
p-Cresol 15.07 76.90 -0.29 91.69
Perchloric Acid 12.02 10.77 60.07 82.87
Phenanthrene 0.47 94.79 7.52 102.77
Phenol 31.55 65.52 3.93 101.00
Phenylalanine 5.84 1.62 86.01 93.47
Phthalic Anhydride 7.53 2.90 89.95 100.38
Pramitol 10.61 87.08 -10.85 86.84
Progesterone 0.21 28.97 70.12 99.29
Pyrene 0.33 90.93 10.05 101.31
Ranitidine 12.61 34.88 69.39 116.89
s-1-Methyl-5-3-Pyridinyl-2-Pyrrolidinone 1.55 36.32 38.95 76.82
Salbutamol 23.10 3.29 85.57 111.95
Saxitoxin 5.28 8.52 86.56 100.37
Serine 15.56 3.13 77.26 95.95
Sulfachlorpyridazine 1.48 9.09 82.49 93.05
Sulfadimethoxine 1.52 10.30 85.40 97.22
Sulfamerazine 1.64 5.60 84.19 91.43
Sulfamethazine 1.77 5.99 85.23 93.00
Sulfamethizole 4.18 6.24 86.92 97.34
Sulfamethoxazole 1.43 8.86 81.01 91.30
Sulfathiazole 2.94 8.99 84.23 96.17
t Butyl Alcohol 20.79 7.08 71.30 99.17
Terbacil 6.98 5.90 69.12 82.00
Terramycin 3.76 27.89 83.81 115.47
tert amyl methyl Ether 21.30 66.97 -0.77 87.49
Testosterone 1.04 20.57 75.39 97.01
Tetracycline 3.40 14.16 83.29 100.85
Thio-N-methyl-carbamoyl-oxy-methylester 15.94 19.09 74.25 109.29
Threonine 10.38 4.86 82.90 98.14
Toluene 5.76 90.38 -4.88 91.26
Trichloroacetic Acid 22.09 5.51 73.92 101.52
Trimethoprim 2.13 87.68 2.16 91.97
triphenyl Phosphate 0.33 17.03 74.74 92.10
Urea 75.25 2.21 4.50 81.95
Valine 16.93 6.39 76.44 99.76

Table 21c.  Final Model Output for “Universal” PA 
(Continued – See Table 21b) 
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Compound Name P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux
1,1 Dichloropropanone 85.18 33.24 80.32 61.57 84.66 58.21 96.43 57.76
1,1,2 Trichloroethene (TCE) 95.96 21.20 80.43 11.14 93.46 34.08
1,1,2,2 Tetrachloroethane 99.91 0.00 99.68 -33.49 99.89 16.02 99.91 0.12 99.88 1.14 67.12 5.31
1,1,2,2, Tetrachloroethylene (PCE) 99.91 0.00 99.71 -2.36 99.89 -2.58 99.92 -2.44 99.88 -3.28 69.09 6.04
1,2 Dichlorobenzene 98.77 2.00 93.76 -1.78 98.39 16.70 86.91 -0.73
1,2 Dimethylbenzene 96.04 0.00 97.02 -5.39 98.54 -19.89 96.80 -8.47
1,2,4 Trimethylbenzene 99.88 0.00 99.14 -6.13 98.96 -16.39 93.69 -8.54 75.48 1.94
1,3,5 Trimethylbenzene 99.00 0.00 98.37 -5.02 99.76 -19.54 99.90 -7.06 98.43 -8.54 82.21 3.46
1,4 Dichlorobenzene 98.07 0.52 94.62 -4.85 93.68 -0.57
1,4 Dichlorophenoxyacetic Acid 88.88 81.08 85.36 66.00 95.48 90.28 94.96 83.49 92.67 80.77 56.10 46.61
17a Estradiol 99.82 29.32 98.16 15.35 99.11 32.61 99.63 16.91 99.42 24.93 96.97 0.84
2,2 bis-p-Chlorophenyl 1,1 Dichloroethane 99.49 71.86 99.32 88.53
2,2 bis-p-Chlorophenyl 1,1,1 Trichloroethane 96.74 72.46 99.52 77.47 99.71 79.91 97.56 -2.07
2,2 bis-p-Methoxyphenyl 1,1,1 Trichloroethane 90.36 72.19 98.80 98.03 99.67 93.66
2,2,2 Trichloro 1,1-bis-4-chlorophenyl Ethanol 99.15 71.60 99.25 79.90
2,3 Naphthalenedicarboxylic Acid 84.35 90.42 97.07 79.80 88.75 81.66 97.48 78.47 98.13 72.27 91.02 0.62
2,3,4,5,6 Pentachlorophenol 99.63 53.52 97.40 52.89 99.18 37.65 94.26 23.23 98.28 39.53 97.94 0.35
2,3,5,6 Tetrachloroterephthalic Acid 99.08 68.40 96.76 75.26 86.47 99.68 89.30 75.96
2,4 Dichloro-4'-nitrodiphenyl Ether 89.46 75.16 99.57 43.74 97.21 -1.18
2,4 Dinitrophenol 97.54 44.18 89.90 36.53
2,4 Dinitrotoluene 95.94 8.41 96.56 3.88 98.11 1.75 98.04 1.68 97.24 -2.48 92.10 0.47
2,4,5 Trichlorophenoxyacetic Acid 93.43 73.24 89.87 56.28 96.73 82.31 90.67 74.91 98.17 73.24
2,6 bis-1,1 Dimethylethyl 2,5 Cyclohexadiene 1,4 dione 77.52 54.10 95.07 6.33
2,6 bis-1,1 Dimethylethyl Phenol 99.58 70.31 99.91 52.45 90.34 0.88
2,6 Dinitrotoluene
2,6 di-tert-butyl-p-Cresol 98.16 74.91 99.88 40.35 92.74 2.08
2,6 Naphthalenedicarboxylic Acid 97.80 74.88 96.11 82.51 96.81 76.20 98.33 72.32
2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor)99.56 94.03 97.45 77.40 97.35 77.77 98.49 85.37 94.27 4.95
3 Hydroxycarbofuran 99.23 94.98
3,4,5,6,7,8,8a-Heptachlorodicyclopentadiene 99.70 19.81 96.25 55.84 99.82 47.92 76.45 28.83
3-amino-1H-1,2,4 Triazole 93.03 81.25 69.84 49.65 76.40 0.29 87.65 1.20 95.40 24.45
4 Nonylphenol 99.75 63.88 99.87 78.85 99.63 76.99 99.78 26.83 99.55 68.02 99.46 1.88
4,6 Dichlorophenol 92.37 0.00 96.69 0.07 98.28 6.22 97.82 4.68 96.70 -3.38 97.82 -0.80
4-amino-6-tert-butyl-3-methylthio-as-triazin-5,4H-one 79.12 70.65 49.48 0.23
5-methyl-1H-Benzotriazole 93.71 33.56 72.13 -12.38

"Univ" PA CA BW-30 ESPA-2 LFC-1 TFC-HR

Table 22a.  Estimated Percent Rejection based on mass of compound passing through the membrane (P-Flux) 
and on mass of compound not interacting with the membrane (R-Flux).  P-Flux represents the classical method 
of determining rejection, which does not take into account association with the membrane.  Bolded compounds 
represent surrogates used to build the models.  Blank spaces indicate model failure.
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Compound Name P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux
6-chloro-N-ethyl-N'-isopropyl-1,3,5 Triazine-2,4-diamine 95.20 -9.79
Acetaminophen 93.56 3.34 78.98 31.71 11.04 0.76
Acetochlor 91.91 80.83 88.23 67.96
Alanine 87.26 79.84 85.04 76.28 84.89 76.08 90.27 82.22 83.57 80.97 41.36 40.05
Aldicarbsulfone 78.37 86.28 97.26 69.22 87.46 75.89 98.58 77.50 61.63 72.46 26.84 12.56
Aldrin 99.02 67.59 91.99 84.69 99.28 74.38 85.28 2.07
alpha-naphthyl-N-Methylcarbamate 91.86 81.67 99.16 77.57 88.57 60.69 95.41 9.85
Anatoxin a
Androsterone 99.76 95.88 99.61 43.83 96.05 0.55
Anthracene 99.91 12.48 99.55 14.71 99.45 -10.69 99.51 16.93 99.58 5.91 99.55 0.97
Asparagine 90.53 91.74 77.83 73.00 87.94 83.17 65.09 64.01 87.02 79.02 33.92 42.86
Aspartic Acid 85.68 82.57 81.18 76.75 91.69 87.17 88.00 80.79 86.78 80.64 64.38 61.70
Atrazine 95.82 -7.85
Benzene 75.03 0.00 69.28 -2.55 83.79 12.98 77.79 2.46 79.21 8.13 42.79 1.48
benzo-a-Pyrene 99.99 18.06 99.37 58.99 99.81 6.04 99.77 4.16
benzo-e-1,3,2 Dioxathiepin-3-oxide 95.55 94.70 81.26 81.43 99.89 81.18 90.83 83.96 85.38 64.78
beta Sitostanol n Hydrate 99.55 73.77 99.53 59.95 99.69 85.52 99.60 74.20 99.46 70.10 99.47 75.84
beta-Estradiol 99.76 33.22 98.01 30.65 99.62 17.25 99.71 26.86
bis-2-Ethylhexyl-adipate 46.62 0.00 96.45 79.05 94.90 0.87
Bisphenol 97.31 65.81 98.00 69.88 99.04 84.03 99.76 74.45 98.82 74.46 99.16 0.21
Bromochloroacetic Acid 94.74 87.76 90.03 69.30 97.19 62.45
Bromochloroacetonitrile 75.35 32.48 53.56 67.87 73.96 74.57 88.88 69.12
Bromochloromethane 10.19 15.85 88.57 63.48 78.83 62.77
Bromodichloromethane 94.61 72.32 81.45 59.89 67.89 31.09
Bromoform 99.72 51.00 75.33 5.54
Bromomethane 82.59 49.51 86.14 75.90 80.30 52.96
Butylated-Hydroxyanisole 99.75 31.89 99.81 39.50 88.21 2.30
Caffeine 82.39 69.59 80.36 59.49 82.99 72.39 82.80 68.49 79.92 64.92 29.65 15.14
Carbadox 98.13 73.90 90.29 71.49 97.83 1.58
Chloralhydrate 99.47 71.24 93.03 89.52 90.53 71.50 61.58 1.57
Chloroform 88.92 56.31 73.82 56.20 63.41 33.19
Chlorotetracycline 99.54 86.21 99.04 100.87
Chlorpyrifos 99.20 71.33 99.29 43.86 98.88 76.80 99.25 46.84 99.29 62.81 96.68 -0.19
Cholesterol 99.91 87.46 99.97 76.24 99.76 87.83 99.66 88.03 99.79 85.63 99.73 70.30
Cimetidine 92.20 79.85 83.79 44.47 95.22 63.65 86.46 62.29 90.61 67.54 37.92 22.86
Ciprofloxacin
cis-Chlordane 99.31 86.35 98.28 103.47 98.98 46.42 98.06 -54.30 99.42 79.64 91.73 48.52
Codeine 92.85 77.34 84.12 36.50 89.15 46.74 92.61 76.11 88.87 61.67 44.14 10.66
Cyclotrimethylenetrinitramine 29.83 -54.30
Cylindrospermopsin 93.37 91.02 90.89 84.36 87.00 73.06 97.04 84.32
Cymene 99.32 0.00 99.76 14.69 99.22 26.58 99.92 35.94 98.36 -10.39 87.68 1.63
Cysteine 83.80 76.79 91.64 83.09 84.67 80.05 92.25 86.50 90.01 82.35 57.10 42.02

"Univ" PA CA BW-30 ESPA-2 LFC-1 TFC-HR

Table 22b.  Estimated Percent Rejection based on mass of compound passing through the membrane 
(P-Flux) and on mass of compound not interacting with the membrane (R-Flux).
(Continued – See Table 22a)
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Compound Name P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux
Diazinon 95.60 96.52 92.35 -1.34
Dibromoacetatic Acid 98.28 78.09 67.24 66.79 82.00 80.90 96.85 80.56 94.72 69.17
Dibromoacetonitrile 90.43 0.00 90.90 75.88 95.51 69.65 41.57 16.00
Dibromochloromethane 92.47 67.86 87.85 29.28
Dibromochloropropane 99.57 0.00 98.80 50.91
Dichloroacetic Acid 85.35 75.43 69.44 58.63 73.25 75.94 79.33 67.59 76.17 66.72 55.89 37.16
Dichloroacetonitrile 80.85 39.77 91.79 71.71 96.83 71.90
Dichlorodifluoromethane 78.28 61.43 97.43 1.75
Dichlorodiphenyldichloroethylene 97.45 79.24 99.39 78.66 83.37 36.15 92.42 13.22
Dichloropropane 95.98 33.88 91.24 66.38 84.99 76.99 88.94 56.84
Dieldrin 99.96 94.96 99.14 91.26
Diethylphthalate 94.24 59.64 94.09 63.20 94.50 64.57 98.58 62.42 95.12 61.30 84.19 0.22
Diethylstilbestrol 99.90 67.32 99.85 81.93 99.85 80.44 99.85 50.95 99.86 69.13 99.72 0.43
Digoxigenin 99.09 81.64 98.65 89.12 99.43 58.85 98.20 72.19
Digoxin 96.00 73.73 96.74 79.32
Diltiazem 92.65 72.69 99.72 73.85 92.23 75.54 94.75 -0.32
Dipropylthiocarbamic Acid-s-ethylester 94.32 91.28 97.15 87.52 86.26 7.33
di-sec-Octylphthalate 98.46 70.20 99.82 82.66 97.41 9.08
Disulfoton 99.81 96.58 98.91 93.07 99.78 103.16 98.19 85.98
Diuron 36.22 2.64 96.04 60.35 87.53 70.19 69.64 7.30
d--n-Butylphthalate 99.60 67.47 96.30 71.57 97.42 80.70 99.64 12.77
d--n-Octylphthalate 99.94 74.83 99.96 93.84 99.76 22.22
Doxycycline 95.86 85.33 95.91 82.58 94.26 79.40 91.42 77.12 94.92 78.59 82.96 53.97
Enalaprilat 99.56 92.11 99.12 74.00 99.67 76.88 91.26 83.14 20.51 6.42
Endosulfansulfate 99.94 93.66 99.27 46.75 92.18 5.86
Enrofloxacin 96.82 89.40 97.39 69.09 96.62 54.77 91.25 81.74 97.40 74.79 86.70 28.45
Equilenin 99.77 42.95 99.16 56.24 99.59 0.77 98.58 4.97
Equilin 99.76 27.29 98.37 0.13
Erythromycin 96.28 91.16 95.76 82.74 97.22 90.00 97.46 87.94 96.67 88.25 70.63 70.00
Estriol 99.97 94.26 91.62 26.36 96.65 87.63 98.85 3.31
Estrone 99.41 28.69 99.72 1.39 99.10 18.65 99.80 -1.54 99.58 32.56 97.44 -0.39
Ethylbenzene 95.50 0.00 97.37 -2.72 98.05 -2.06 97.17 -4.96 97.39 -4.95 74.14 1.42
Ethylenediaminetetraacetic Acid (EDTA) 94.91 91.11 86.31 74.29 92.79 92.16 88.70 88.17 91.23 85.89 52.89 45.09
ethyl-tert-Butyl Ether 81.34 84.91 53.55 -0.39
exo-Dimethanonaphthalene 98.73 57.89 92.72 88.09
Fluoranthrene 99.92 19.06 99.85 13.32 98.15 -0.87 99.72 7.01 99.64 1.48
Fluoxetine 99.63 90.00 95.48 66.67 99.44 77.75 98.65 -1.93
Fonofos 99.78 72.71 99.84 108.88 99.89 75.24 98.57 85.06 94.97 0.44
Gemfibrozil 85.94 72.36 93.79 83.44 98.39 94.10 95.83 84.61
Glycine 93.88 87.92 74.78 79.11 73.40 76.65 97.32 87.17 66.02 86.59 37.27 38.56
Hexachlorobenzene 99.99 18.07 97.26 -0.85
Hexachlorobutadiene 89.59 39.32 93.10 69.69 99.79 -3.00

"Univ" PA CA BW-30 ESPA-2 LFC-1 TFC-HR

Table 22c.  Estimated Percent Rejection based on mass of compound passing through the membrane 
(P-Flux) and on mass of compound not interacting with the membrane (R-Flux).
(Continued – See Table 22b)
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Compound Name P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux
Hexachlorocyclohexane 99.60 10.65 92.71 -4.50
Hexachloropentadiene
Histidine 84.39 76.70 87.00 77.22 80.74 75.48 90.36 83.38 85.87 78.75 55.83 44.55
Ibuprofen 84.17 65.88 95.49 82.48 94.75 85.14 96.09 86.27 94.93 82.17 42.42 22.96
Leucine 95.47 77.42 93.46 94.32 83.20 86.31 39.36 37.79
Lincomycin 96.87 91.88 99.89 87.68 99.03 98.72 92.59 85.48 48.96 12.59
Lindane 98.07 24.78 97.66 40.32 98.91 61.22 99.00 35.69 98.49 47.32 98.47 -0.22
Linuron 57.93 26.34 98.00 78.01 95.07 65.54
Lysine 86.12 82.97 85.25 81.25 94.15 91.00 83.15 84.53 89.59 84.69 46.56 27.34
Mestranol 99.82 83.41 99.18 106.34 99.11 81.69 98.32 0.24
Metformin 36.18 13.44 30.15 2.30
Methionine 74.61 64.32 83.05 55.26 89.44 84.79 82.55 73.18 87.78 75.75 51.20 39.66
methyl Parathion 98.81 86.03 98.46 69.41 98.86 75.01 96.72 67.29 98.55 78.87 98.14 -0.10
Methylene Bromide 93.22 45.07 79.85 70.36 93.06 77.58
Methylene Chloride 85.09 70.67 60.50 44.93 68.07 23.26
methyl-tert-butyl Ether (MTBE) 78.04 76.90 51.95 -0.47
Metolachlor 72.39 61.32
Metribuzin 79.13 70.58 49.51 0.22
Microcystin LR 86.57 79.75 96.92 105.68
Molinate 75.37 31.17 98.69 71.99
Monobromobenzene 98.53 0.00 93.76 11.34 76.69 -54.30
N N diethyl 3 methylbenzamide 62.71 48.87 74.62 0.29
N-Dimethylamine 65.06 42.84 71.24 39.43 64.76 62.76 64.70 51.93 44.15 10.38
Nitrilotriacetic Acid 96.56 102.92 96.73 78.56 88.80 88.64 49.30 49.24
Nitrobenzene 99.61 0.00 99.53 -3.05 99.71 -2.69 99.66 -2.19 99.63 -6.95 64.02 0.80
Nitrosodibutylamine 87.49 1.88 97.27 63.27 65.60 -9.03
Nitrosodiethylamine 42.51 8.70
N-nitroso dimethyl amine (NDMA) 28.03 6.45 19.63 18.60 25.28 2.72 32.45 3.63 9.84 3.67
N-nitrosodi-n-butylamine 96.19 59.18 70.34 -3.09
N-nitrosodi-n-propylamine
N-nitrosomorpholine 82.82 30.68
N-nitrosopiperidine
N-nitrosopyrrolidine 74.72 83.64
Norethindrone 99.90 25.64 99.83 63.79 99.64 68.08 99.72 63.34
Norfloxacin 98.13 92.71 93.61 67.80 91.62 51.13 96.25 83.01 92.38 83.52 65.99 11.89
N-triacetic Acid 72.70 85.39 99.57 96.32 97.52 76.47 85.42 82.21 33.01 33.92
o-Cresol 88.82 13.24 94.30 10.57 85.52 -0.03 94.13 3.55 76.88 0.05
Octachloro-4-7-methanotetrahydroindane 99.93 91.90 95.29 70.66 99.61 75.90
Octachloroepoxide 99.58 86.70 99.23 78.59
Paraxanthine 77.67 79.02 82.82 60.94 89.63 77.01 94.31 58.57 87.78 56.47 46.85 16.16
Paroxetine 99.36 83.20 99.36 78.53 98.61 0.49

"Univ" PA CA BW-30 ESPA-2 LFC-1 TFC-HR

Table 22d.  Estimated Percent Rejection based on mass of compound passing through the membrane 
(P-Flux) and on mass of compound not interacting with the membrane (R-Flux).
(Continued – See Table 22c)
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Compound Name P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux P-Flux  R-Flux
p-Cresol 97.32 8.39 95.08 7.43 65.13 -3.43 84.93 -0.29
p-Dichlorobenzene 98.00 0.52 94.62 -4.85 93.68 -0.57
Perchloric Acid 88.65 74.43 92.84 99.37 87.98 60.07
Phenanthrene 99.73 12.63 99.45 14.04 99.28 -4.09 99.49 5.46 99.53 7.52 99.50 0.97
Phenol 66.54 2.68 72.11 10.55 60.46 -1.45 67.52 -1.19 68.45 3.93 28.04 -0.34
Phthalic Anhydride 94.42 91.30 92.92 90.53 94.41 90.03 91.80 88.36 92.47 89.95 71.42 64.35
Progesterone 99.94 77.15 99.79 65.15 99.99 80.95 99.83 69.81 99.79 70.12 98.32 -0.28
Pyrene 99.86 18.31 99.73 22.23 99.43 -26.66 98.71 -1.56 99.67 10.05 99.67 1.71
Ranitidine 87.39 69.39
s-1-Methyl-5-3-Pyridinyl-2-Pyrrolidinone 96.04 62.09 98.45 38.95
Salbutamol 89.16 68.81 85.68 80.01 76.90 85.57 24.92 3.65
Saxitoxin 96.68 92.84 91.75 65.29 97.91 82.08 94.72 86.56 60.16 7.91
Serine 71.77 85.65 78.14 85.84 65.78 80.40 93.00 80.18 84.44 77.26
Simazine
Sulfachlorpyridazine 98.15 79.70 97.89 70.01 99.20 81.89 98.52 82.49
Sulfadimethoxine 95.88 83.37 97.11 58.41 96.58 62.32 98.81 85.35 98.48 85.40
Sulfamerazine 99.42 84.60 98.63 74.61 99.46 83.61 98.36 84.19 29.85 0.68
Sulfamethazine 97.72 82.96 97.40 77.32 97.65 48.85 99.20 86.30 98.23 85.23
Sulfamethizole 97.64 88.97 84.76 84.93 95.82 86.92
Sulfamethoxazole 97.48 82.42 98.65 73.11 93.60 60.94 98.57 81.01
Sulfathiazole 98.75 82.91 97.58 74.96 95.44 80.74 99.34 71.33 97.06 84.23
t Butyl Alcohol 80.37 78.13 82.11 79.67 77.68 66.91 80.86 66.84 79.21 71.30 13.49 12.52
Terbacil 98.44 65.34 93.02 69.12
Terbufos 97.42 74.10 98.60 73.79 99.37 70.40 79.76 4.87
Terramycin 95.67 86.59 91.05 74.69 95.42 80.61 97.74 80.83 96.24 83.81
tert amyl methyl Ether 99.35 0.00 92.27 76.61 78.70 -0.77
Testosterone 99.13 87.55 97.69 70.40 98.23 61.03 99.67 85.55 98.96 75.39 80.36 2.77
Tetracycline 96.68 86.62 94.18 75.41 96.67 78.49 97.02 83.45 96.60 83.29 62.05 57.31
Thio-N-methyl-carbamoyl-oxy-methylester 81.25 66.30 98.45 75.62 91.74 80.19 84.06 74.25
Threonine 90.99 83.13 88.41 83.70 88.14 80.51 91.32 84.04 89.62 82.90 50.57 35.08
Toluene 98.59 0.00 93.40 7.43 80.49 0.23 92.88 -1.25 94.24 -4.88 53.10 2.04
Tributyl Tin 99.85 54.28 99.22 96.50 99.92 98.08
Trichloroacetic Acid 77.20 63.68 79.80 71.78 87.35 82.86 71.84 67.17 77.91 73.92 44.09 39.79
Triclosan 99.00 72.65 81.67 61.95
Trimethoprim 92.64 95.68 94.43 56.41 97.87 2.16 87.88 41.94
triphenyl Phosphate 98.04 91.86 99.22 90.90 99.85 99.44 99.67 74.74 99.50 -1.50
tris 2 Chloroethyl Phosphate 95.95 95.96 98.76 53.03 97.48 92.71 97.77 1.67
Tylosin 92.25 97.15 94.55 72.09 99.29 68.20
Urea 3.68 4.12 15.48 5.69 14.67 4.38 27.69 7.26 24.75 4.50 8.05 28.21
Valine 78.61 70.71 82.84 79.31 87.71 83.59 90.59 82.94 83.07 76.44 38.31 34.09

"Univ" PA CA BW-30 ESPA-2 LFC-1 TFC-HR

Table 22e.  Estimated Percent Rejection based on mass of compound passing through the membrane 
(P-Flux) and on mass of compound not interacting with the membrane (R-Flux).
(Continued – See Table 22d)
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Test Compounds BW-30 ESPA-2 LFC-1 TFC-HR "Univ" PA CA References
1-2 Dichlorobenzene 98.77 93.76 99.84 91.63 98.39 86.91 70-92%  (PA)      DOW-Filmtec

2,3,4,5,6 Pentachlorophenol 99.63 97.40 99.18 94.26 98.28 97.94 >86%  (PA)          DOW-Filmtec;  >95% (PA)   Ozaki et al.  

2,4 Dinitrophenol 33.56 94.71 97.54 89.90 97.73 92.63 ~95%  (PA)          Ozaki et al.

Bromodichloromethane 45.93 81.58 94.61 81.45 67.89 8.31 79%  (PA)            DOW-Filmtec

Caffeine 82.39 80.40 82.99 82.80 79.92 29.65 92%  (PA)            Reinhard et al.

Ciprofloxacin 98.49 88.33 92.03 95.11 93.76 65.62 >91%                   WBMWD

Dieldrin 99.96 99.18 98.59 78.91 99.14 83.15 95.4%  (CA)        Chian et al.

Estrone 99.41 99.72 99.10 99.80 99.58 97.44 93-98%               Schafer et al.

Gemfibrozil 85.94 93.79 98.39 95.83 69.07 91.43 >99%                   WBMWD

Glycine 93.88 74.78 73.40 97.32 66.02 37.27 78%  (PA)            DOW-Filmtec

Ibuprofen 84.17 95.49 94.75 96.09 94.93 41.30 >89%                   WBMWD

Lindane 98.07 97.66 98.91 99.00 98.49 98.47 99.5%  (CA)        Chian et al.

Methyl parathion 98.81 98.46 98.86 96.72 98.55 98.14 99.6%  (CA)        Chian et al.

Phenol 66.54 72.11 60.46 67.52 68.45 28.04 65%  (PA)            DOW-Filmtec;  67-85% (PA)   Koyama et al.

Sulfamethoxazole 97.48 98.65 93.60 99.26 98.57 86.36 >90%                   WBMWD

t butyl alcohol 80.37 82.11 77.68 80.86 79.21 13.49 81-83%  (PA)      Koyama et al.;  87% (PA)   Dickson et al.

Toluene 98.59 93.40 80.49 92.88 94.24 53.10 84-94%  (PA)      Schutte et al.

Urea 3.68 15.48 14.67 27.69 24.75 8.05 30%  (PA)            Ozaki et al.

WBMWD = West Basin Municipal Water District

PA = Polyamide

CA = Cellulose Acetate

Percent Rejection by P-Flux

Table 23.  Comparison between predicted rejection and reported values.  
Generally, rejection of compounds predicted by the ANN models were in accord with results obtained from the 
literature.  Bolded compounds indicate surrogate compounds used in the study.
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QSAR Cluster Compound Name Notes
1 Cyclotrimethylenetrinitramine Carcinogen
1 Dichlorodifluoromethane Refrigerant Gas
1 Metformin Pharmaceutical
1 Nitrosodiethylamine Carcinogen
1 N-nitrosomorpholine Carcinogen
1 N-nitrosopiperidine Carcinogen
1 N-nitrosopyrrolidine Carcinogen
1 s-1-Methyl-5-3-Pyridinyl-2-Pyrrolidinone
2 3,4,5,6,7,8,8a-Heptachlorodicyclopentadiene Endocrine Disruptor
2 5-methyl-1H-Benzotriazole Antioxidant-Wastewater Product
2 Bromoform Disinfection Byproduct
2 Dibromochloromethane Disinfection Byproduct
2 exo-Dimethanonaphthalene Endocrine Disruptor
3 2,4 Dichloro-4'-nitrodiphenyl Ether Endocrine Disruptor
4 Androsterone Pharmaceutical
4 Equilin Pharmaceutical
5 2,2 bis-p-Chlorophenyl 1,1,1 Trichloroethane Endocrine Disruptor
5 2,2-bis-p-Chlorophenyl 1,1 Dichloroethane Endocrine Disruptor
7 2,6 bis-1,1 Dimethylethyl 2,5 Cyclohexadiene 1,4 dione
7 ethyl-tert-Butyl Ether Fuel Oxygenate-Carcinogen
7 methyl-tert-butyl Ether (MTBE) Fuel Hydrocarbon-Carcinogen
8 2,6 Dinitrotoluene Ammuntion/Explosives/Foams Manuf
9 4-amino-6-tert-butyl-3-methylthio-as-triazin-5,4H-one Endocrine Disruptor
9 Acetochlor Herbicide
9 Atrazine Carcinogen
9 Metolachlor Pesticide
9 Metribuzin Pesticide
9 N N diethyl 3 methylbenzamide Insecticide
9 N-nitrosodi-n-butylamine Carcinogen
9 N-nitrosodi-n-propylamine Carcinogen
9 Pramitol Herbicide
9 Simazine Carcinogen
9 Terbacil Herbicide
10 Diazinon Pesticide
10 Endosulfansulfate Pesticide
11 cis-Chlordane Pesticide
11 Dieldrin Pesticide
11 Hexachloropentadiene Endocrine Disruptor
11 Octachloroepoxide Endocrine Disruptor
12 benzo-a-Pyrene Polycyclic Aromatic Hydrocarbon
13 Hexachlorobenzene Endocrine Disruptor
13 Hexachlorocyclohexane Carcinogen
16 Ranitidine Pharmaceutical
17 Digoxin Pharmaceutical

Anatoxin a Marine Toxin

Compounds 75%+ of the PA Models Failed to Predict

Table 24.  Compounds that 75% or more of the PA Models Fail to Predict 
Compounds that failed or didn’t model well were identified and it is suggested to 
use them to build future models. 
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Table 25.  Conditions used for MD simulations of NDMA and TCE transport. 
 

Parameter Value Comment 

Temperature 300oK 27oC 

Time Step Size 1 fs 0.001 ps (data analysis at 0.01 ps intervals) 

Simulation Duration 200 ps 0.2 ns 

Boundary Conditions Yes cubic, 30Å per side 
System Density 1.19 g/cc membrane + water + solute 

Water Content 18.96 Wt% TIP3P water models added randomly 

Membrane Charge -24 -1.0 for each free COO- group 

Membrane Mass 15398 amu 1724 atoms 

Total Monomers 116 MPD + TMC 

Crosslink Probability 1.0 all possible crosslinks formed 
Number of Crosslinks 14 28 crosslink bonds 

COO-/Amide Bond Ratio 0.186 experimental ratios from IR ~0.2-0.5 

Number Solute Molecules 1 either NDMA or TCE 

Solute Concentration 0.062 M concentration in membrane 
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Table 26.  Modeled compound diffusivities and flux calculation results. 
 

 

Diffusion 
Coefficient, 

Membrane System 
(cm2/s) 

Diffusion 
Coefficient, Pure 

Water System 
(cm2/s) 

Partition Coefficient 
(KA) from Experiment 

(OCWD data) 

Flux - 
Expt. 

(M/cm2-s) 

Flux - 
Model 

(M/cm2-s) 
Rejection - 

Expt. 
Rejection - 

Model 
NDMA 7.25E-06 7.82E-06 2.10E+01 6.70E-12 6.08E-08 0.44     NC** 
TCE 1.92E-06 7.82E-06 5.06E+02 1.54E-14 8.73E-07 0.99 NC 

Water 1.62E-05 1.56E-05 NA 2-20E-05 9.83E-05* NA NA 
 

*Corresponds to 37.4 gallons/ft2/day 
**NC = not calculated 
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Table 27.  Summary of NDMA and TCE interactions with pure water.  No membrane present (data from 200 ps 
simulations) 
 
. 

 NDMA SD N 
 

TCE SD N 

Ave. Shell Water Count 4.34 1.10 200 
 

2.06 0.66 200 

Ave. Distance To Shell Water (Å) 3.73 0.09 200 
 

3.52 0.16 200 

Ave. H-Bonded Water Count 1.59 1.00 200 
 

0.00 0.00 200 
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Appendix 1 

Definitions of ANN Model Inputs 
 
1. QSAR Molecular Descriptors used in modeling (* Indicates inclusion 

in one or more of the final ANN models) 
General 3D Descriptors:  These molecular descriptors describe the 3D properties of 
the entire molecule. 

ABSQ*  - The sum of the absolute value of the charges on each atom of a 
molecule, expressed as electrons. 
Dipole  - The dipole moment of the molecule expressed in Debyes.  
MaxHp - The largest positive charge on a hydrogen atom in the molecule. 
MaxNeg* – The largest negative charge over the atoms in the molecule. 
MaxQp* – The largest positive charge over the atoms in the molecule.  
Ovality* – The ovality of the molecule, expressed as the ratio of the surface of 
the molecule to that of a perfect sphere (larger values indicate increasingly 
elongated molecules. 
Polarizability – Molecular polarizability calculated on the base of the additive 
approach. Polarizability is the relative tendency of the electron cloud of the 
molecule to be distorted from its normal shape by the presence of a nearby 
external electric field. 
Surface* – The surface area of the molecule. 

 
2D Descriptors – These descriptors quantify properties such as bond properties, 
shape, information content, connectivity topological information and other properties. 
 
Molecular Connectivity Chi Indices – A chi index is a weighted count of values 
computed for a function of the delta values of the constituent atoms in a given type of 
subgraph (portion of the molecular skeleton - delta values refer to the count of 
neighboring atoms bonded to an atom in a hydrogen-suppressed molecule and also 
corresponds to the count of sigma electrons contributed by that atom to bonded, non-
hydrogen atoms).  There are two classes of chi indices.  Simple chi indices, in which 
all atoms are treated as carbon atoms and valence chi indices, in which the value for 
heteroatoms (non-carbon atoms) are computed differently than for the values of 
carbon atoms according to their electron characteristics.  Chi indices have two 
attributes, order (the number of bonds in the molecule fragment being described) and 
type (the type of molecular fragment).  There are four characteristic types – path (p), 
cluster (c), pathcluster (pc) and chain (ring) (ch).  The molecular connectivity chi 
indices represent molecular structure by encoding significant features of whole 
molecules.  Five general categories of molecular information are encoded by these 
indices: degree of branching (low order indices 0 – 2), variable branching patterns 
(high order path chi indices 3 – 10), position and influence of heteroatoms (valence 
chi indices), patterns of adjacency (chi cluster and path/cluster indices) and degree of 

cyclicity (chi chain indices). 



 221

 
 
 
x1 – Simple 1

st
 order chi index – 2 atom simple path index, encodes degree of 

molecular branching. 
xp4 – 4

th
 order path chi index – 5 atom index, encodes variable branching 

patterns. 
xc3 – 3

rd
 order cluster chi index – 4 atom index, encodes patterns of molecular 

adjacency. 
xpc4* – 4

th
 order path/cluster chi index – 5 atom index, encodes patterns of 

adjacency. 
xv1* – 1

st
 order valence chi index – 2 atom index, encodes degree of branching, 

sensitive to nature of different atom types. 
xvp4 – 4

th
 order valence path chi index – 5 atom index, encodes variable 

branching patterns, sensitive to variations in atom types. 
xvp7 – 7

th
 order valence path chi index – 8 atom index, encodes variable 

branching patterns, sensitive to atom types. 
xvp10 – 10

th
 order valence path chi index – 11 atom index, encodes variable 

branching patterns, sensitive to atom types. 
xvc3 – 3

rd
 order valence cluster chi index – 4 atom index, encodes patterns of 

adjacency, sensitive to atom types. 
xvpc4* – 4

th
 order valence path/cluster chi index – 5 atom index, encodes 

patterns of adjacency, sensitive to atom types. 
xvch6 – 6

th
 order valence chain chi index – 7 atom index, encodes degree of 

cyclicity, sensitive to atom types. 
 

Subgraph count indices – These indices are based on a count of a particular type of 
molecular feature such as a path, cluster, path/cluster or ring (chain).  These 
descriptors are useful in characterizing the molecular skeleton. 

nxp5* – the number of paths in the molecule with 5 edges 

nxc3 – the number of 3-way clusters in the molecule 

nxch6* – the number of 6-membered rings in the molecule. 
 

 3D Descriptors for Comparative Molecular Moment Analysis (CoMMA) – 
CoMMA descriptors provide a succinct representation of the 3D distribution of 
molecular mass, shape and charge. 

Ix -Principal Moment of Inertia along X-Axis - Measure of the difficulty 
accelerating the molecule along its X-axis. 
Iy* - Principal Moment of Inertia along Y-Axis - Measure of difficulty 
accellerating molecule along its Y-axis. 
Py* - Component of Dipole Moment along Inertial Y-Axis - Magnitude of 
charge separation along the molecule's Y-axis. 
Pz* - Component of Dipole Moment along Inertial Z-Axis - Magnitude of 
charge separation along the molecule's Z-axis. 
P* - Magnitude of Dipole Moment - Magnitude of charge separation across 
entire molecule. 
Q* - Magnitude of Principal Quadripole Moment - High order multipole 
moment of charge distribution. 
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Dx - Displacement between Center of Mass and Center of Dipole Moment 
along X-Axis - Difference between center of mass in the X-axis and point along 
X-axis where charge is zero. 
Dy - Displacement between Center of Mass and Center of Dipole Moment 
along Y-Axis - Difference between center of mass in the Y-axis and point along 
Y-axis where charge is zero. 
Dz - Displacement between Center of Mass and Center of Dipole Moment 
along Z-Axis - Difference between center of mass in the Z-axis and point along 
Z-axis where charge is zero. 
Qxx - The xx Component of Second Rank Tensor Translated so Origin Coincides 
With Center of Dipole. 
Qyy - The yy Component of Second Rank Tensor Translated so Origin Coincides 
With Center of Dipole. 
 

Total Topological Descriptors - These are descriptors related to the geometrical 
structure of molecules (including the geometry of electron distribution about the 
molecule). 

W - Weiner Index - The number of bonds between all pairs of atoms (based on 
shortest path around the molecule). 
Pf - Platt f Index - Total sum of degrees of edges in the molecular graph; the 
degree of an edge in the number of adjacent edges. 
sumdelI* - Sum of Delta Intrinsic States of atoms - Sum of degree of 
perturbation of the intrinsic state of all atoms in the molecule caused by the 
presence of the adjacent atoms. 
tets2 - Total Electrotopological Index - Sum of E-States values of all atoms in 
the molecule.  E-State is the sum of the intrinsic state of an atom (group) plus the 
sum of the perturbations of the intrinsic state caused by all the other atoms in the 
molecule. 
totop - Total Topological Index – The total topological index, based on 
molecular connectivity formalism. 
Wt* - Total Weiner Number - Same as W, but pairs of atoms are counted with 
respect to all paths in the molecule, not just the shortest path.  This makes Wt > W 
for cyclic molecules. 
nclass - # Symmetry Classes in Molecule - Number of classes of topologically 
similar molecular vertices. 
 

Traditional Kappa Shape Indices – Kappa shape indices represent a method of 
molecular structure quantification in which attributes of molecular shape are encoded 
into three indices derived from counts of one, two and three bond fragments.   

k0 – Kappa 0 – Encodes the number of vertex symmetry classes in the molecule; 
the value decreases with increasing molecular symmetry. 
k1* - Kappa 1 – Encodes the degree of cyclicity in the molecule; the value 
decreases as the degree of cyclicity increases.  Long, straight chain molecules 
have the highest value. 
k2* - Kappa 2 – Encodes the degree of central branching in the molecule; the 
value decreases as the degree of central branching increases. 
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k3* - Kappa 3 – Encodes the degree of separated branching in the molecule. (far 
it is between branches along the molecular backbone); the index increases as the 
degree of branch separation increases (as the distance between branch points 
increases along the molecular backbone). 
 

Other 2D Descriptors 
LogP*  - The octanol/water partition coefficient.  A measure of hydrophobicity, 
this represents the log of the ratio of the solubility of the molecule in octanol over 
the solubility in water.  The index increases as molecules become more 
hydrophobic and decreases as they become more hydrophilic. 
LD50  - The mouse oral LD50 for the molecule, a measure of toxicity. 
 

Atom Type E-State Descriptors – These descriptors describe the electronic 
environment (the accessibility of the electrons) of each atom in the molecule that 
arise due to a combination of the intrinsic properties of the of the atom and the 
influence of the neighboring atoms in the molecule.  These descriptors parameterize 
such properties as hydrogen bonds, molecular polarity, etc.  Atom type and group 
type E-state descriptors are computed for a number of atoms and functional groups.  
Large E-state values may indicate the molecule is more apt to participate in 
intermolecular interactions. 

SsCH3* - Describes the sum of the E-state values for all -CH3 groups in the 
molecule. 
SssCH2  - Describes the sum of the E-state values for all –CH2- groups in the 
molecule. 
SaaCH* - Describes the sum of the E-state values for all aromatic carbon-hydride 
(=CH-) groups in the molecule (the aromatic ring CH). 
SdssC* - Describes the sum of the E-state values for all =C< carbon in molecule. 
SdO* - Describes the sum of E-state values for all =O oxygen in the molecule. 
SsCl – Describes the sum of E-state values for all –Cl chlorine in the molecule. 
 

Hydrogen Atom Type E-State Descriptors – These descriptors describe the sum of 
the hydrogen E-states (electron accessibility at the hydrogen atoms) for all polar or 
non-polar hydride groups of a given type in the molecule.  These descriptors relate to 
such molecular properties as hydrogen bonding.  As with E-state descriptors, large 
values indicate an increased ability of the molecule to participate in intermolecular 
interactions. 

SssOH – Sum of the hydrogen E-states for the –OH groups in the molecule. 
Shother – Sum of the hydrogen E-states for non-polar hydrogens (CH hydrogen) 
in the molecule 

Hmax – The largest atom hydrogen E-state in the molecule – the largest polarity 
on a hydrogen atom in the molecule (also correlates with partial charge). 
Gmax* - The largest atom E-state in the molecule (the most electronegative atom 
in the molecule). 
Hmin* - The smallest atom hydrogen E-state in the molecule. 
Gmin* - The smallest atom E-state in the molecule (also, the most electrophilic 
atom in the molecule). 



 224

 
 
Information Indices – These molecular descriptors are related to the information 
content of the molecule, and are derived from information theory. 

si - Shannon Information Index – A measure of molecular complexity 
accounting for both diversity and concentration of features. 
IC - Information Content - Based on the total number of molecular vertices, 
hydride groups or non-polar hydrogen atoms. 
R - Molecular Redundancy – A measure of structural repetition within the 
molecule (is highest in highly internally symmetrical molecules like benzene and 
lowest in internally diverse molecules such as tetracycline).  
idc - Bonchev-Trinajsti  Information Content – Index is based on 2-path 
counts.  Value increases with increasing molecular complexity. 
idcbar* - Bonchev-Trinajsti Mean Information Content – Index is based on 2-
path counts.  Index increases with molecular complexity. 
 

Molecular Properties – These descriptors include some fundamental properties of 
the entire molecule. 

fw* – Formula weight – the molecular weight of the molecule in Daltons. 
nelem – Number of elements – The total number of different elements in the 
molecule. 
nrings – Number of rings – The number of rings in the molecule (also known as 
the cyclomatic number). 
ncirc – Number of circuits – The total number of all cycles in the molecule. 
Includes ring structures as well as path circuits.  Example: biphenyl = 2, but 
naphthalene = 3 because in addition to the aromatic rings, a circuit can be made 
about the periphery of the naphthalene molecule.  
phia - Kappa Flexibility Index (# Bonds in normal graph for alkanes) – 
Inversely proportional to molecular complexity; increases with homolgation and 
decreases with increased branching or cyclicity.   
knotp - Difference Between Chi cluster-3 and chi path/cluster-4 – Decreases 
with increasing molecular complexity. 
numHBa* – The number of hydrogen bond acceptors in the molecule. 
SHHbd – The number of hydrogen bond donors in the molecule. 
Qs* – Specific Molecular and Group Polarity Descriptor – This descriptor is 
inversely proportional to molecular polarity and hydrophibicity. 
Qsv* – Average Molecular and Group Polarity Descriptor – This descriptor is 
inversely proportional to molecular polarity and hydrophibicity. 

 

2. Polyamide (PA) reverse osmosis membrane properties used as inputs 

in development of the “Universal” PA model. 
 
Contact Angle (degrees) – The air bubble contact angle of the membrane, 
measured as the outside angle between the membrane surface and a line tangential 
to an air bubble trapped against the membrane surface (in 17 MOhm deionized 
water at 24oC).  The contact angle represents a measure of surface hydrophibicity; 
the smaller the angle, the greater the surface hydrophibicity.   
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COO

-
/Amide I Ratio - A unitless relative index of membrane cross-link 

frequency derived from attenuated total internal reflection Fourier transform 
infra-red  (ATR-FTIR) spectroscopic measurements based on the ratio of the 
absorption at 1415 cm-1 corresponding to the presence of free carboxylate groups 
and the absorption 1665 cm-1 corresponding to the amide I bonds in the 
membrane.  The larger the ration, the less cross-linked the membrane. 
 
COO

-
/Amide II Ratio - A unitless relative index of membrane cross-link 

frequency derived from ATR-FTIR spectroscopic measurements based on the 
ratio of the absorption at 1415 cm-1 corresponding to the presence of free 
carboxylate groups and the absorption at 1542 cm-1 corresponding to the amide II 
bonds in the membrane.  The larger the ration, the less cross-linked the 
membrane. 
 

 
OH

-
/Amide I Ratio - A unitless relative index of membrane cross-link frequency 

derived from ATR-FTIR spectroscopic measurements based on the ratio of the 
absorption at 3400 cm-1 corresponding to the presence of hydroxyl groups and the 
absorption at 1665 cm-1 corresponding to the amide I bonds in the membrane.  
The larger the ratio, the less cross-linked the membrane. 
 

 
Polyamide Thickness – A unitless relative index derived from ATR-FTIR 
spectroscopic measurements based on the ratio of the strength of the 1665 cm-1 
amide I absorption band of the polyamide layer and the 874 cm-1 absorption band 
of the polysulfone membrane support layer.  The greater the ratio, the thicker the 
polyamide layer. 
 
Roughness (nm) – A direct measurement by atomic force microscopy (AFM) of 
the rugosity of the membrane surface defined as the standard deviation of the 
height of features on the membrane, expressed in nanometers.  The roughness of 
the membrane may reflect subtle differences in internal physicochemical 
properties.  Interactions of nanoparticles with membrane surfaces are often 
positively related to surface roughness. 
 
Specific Water Flux (GFD/PSI) – Measurement of the membrane water flux per 
unit water pressure.  Many membrane properties are represented by the specific 
water flux, including membrane density and intrinsic porosity, hydraulic 
conductivity, hydrogen bonding, charge interactions and many others. 
 
Zeta Potential (mV, pH 7) – The Zeta potential of the membrane, in millivolts.  
Zeta , was determined at pH 7.0 at 20oC in 1000 mg/L NaCl using measurement 
of streaming potential obtained with a streaming potential analyzer (ZetaCAD, 
CAD Instrumentation, Les Essarts Le Roi, France) and applying the Helmholtz-
Smoluchowski equation: 
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where ζ  is the zeta potential; Us is the streaming potential; P is the applied 
pressure, ∆ Us/ ∆ P is the slope of the streaming potential versus applied pressure 
curve; µ  is the dynamic viscosity of the solution; ε  is the permittivity of the test 
solution; ε 0 is the permittivity of free space; L is the channel length of the 
membrane test cell; A is the test cell channel cross-sectional area; and R is the test 
cell channel resistance. 
 
Zeta Potential Slope (pH 5-7) - This is rate of change of the Zeta potential as the 
pH is shifted from 5 to 7. This index is inversely proportional to the ease with 
which membrane protons may be introduced or removed as a function of pH; the 
more negative the index, the more easily the membrane may be protonated or 
deprotonated. 
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Appendix 2 

 
Structures and QSAR Molecular Descriptors of the Surrogate 

Molecules Used for Modeling Compound Interactions 
 with Reverse Osmosis Membranes 
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
2.0688 -0.4507 0.2383 1.2151 86.1161 0.0000 0.7815 0.0000 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
48.1178 0.9057 0.0000 0.9057 2.0820 3.1667 9.0000 4.0000 1.3333 0.0000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-1.8420 0.0000 0.0000 -0.8333 9.0000 9.0000 1.5514 -0.8333 1.0000 60.0556

numHBa Qs Qsv
3.0000 0.4224 0.4400

Urea 
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
0.8702 -0.3118 0.1834 1.2193 82.6823 0.0000 1.0233 0.0000 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
53.6047 0.1875 0.0000 0.1951 0.6462 1.6944 4.0000 3.0000 2.0000 0.0000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-0.0314 1.6806 0.0000 0.0000 0.0000 7.5694 0.3833 0.2500 0.9183 46.0690

numHBa Qs Qsv
1.0000 0.5485 0.7618

t Butyl Alcohol
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.1210 -0.3578 0.2604 1.3094 112.1383 0.4082 1.2770 0.0816 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
114.3784 0.0749 0.0000 0.6665 0.7723 2.6528 18.0000 5.0000 2.2500 4.0000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-0.2035 3.1528 0.0000 0.0000 9.1806 9.1806 0.5934 1.1944 1.5219 74.0824

numHBa Qs Qsv
3.0000 0.8626 0.6614

N-dimethylamine



 231

ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
0.9623 -0.2788 0.0604 1.2497 102.4022 0.4082 1.2770 0.0816 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
123.8753 0.2195 0.0001 1.0488 1.2847 2.6528 18.0000 5.0000 2.2500 4.0000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-0.2035 3.1528 0.0000 0.0000 9.1806 9.1806 0.5934 1.1944 1.5219 74.0824

numHBa Qs Qsv
3.0000 0.8626 0.6614

N-Nitroso Dimethylamine (NDMA)
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.6402 -0.3897 0.3436 1.2919 105.8707 0.4082 1.1895 0.0373 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
130.0206 0.0537 0.0000 0.4736 0.3324 4.8773 18.0000 5.0000 2.2500 4.0000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-2.6129 0.0000 0.0000 -0.9676 9.2431 9.2431 0.7819 -0.9676 1.5219 75.0672

numHBa Qs Qsv
3.0000 0.5430 0.4163

Glycine
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.4882 -0.2795 0.3350 1.2436 109.0973 2.5981 2.3786 0.9802 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
369.6898 0.3927 0.0000 0.5364 0.5998 7.6551 42.0000 7.0000 1.8519 2.6667

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
1.0930 0.0000 0.0000 -1.4606 9.6250 9.6250 2.6583 -2.1667 1.5567 163.3877

numHBa Qs Qsv
5.0000 0.7726 0.4435

Trichloroacetic Acid
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.4396 -0.3014 0.3345 1.2345 107.6139 1.3333 2.0257 0.4370 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
226.5332 0.3679 0.1487 0.5628 0.3662 6.2886 29.0000 6.0000 2.2222 3.0000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
0.3708 0.0000 0.0000 -1.2099 9.4352 9.4352 1.0402 -1.2870 1.5656 128.9427

numHBa Qs Qsv
4.0000 0.6545 0.4242

Dichloroacetic Acid
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Alanine

ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.8023 -0.3998 0.3431 1.3117 122.2123 1.3333 1.6271 0.2257 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
171.8076 0.3392 0.1935 0.5073 0.3040 5.9861 29.0000 6.0000 2.2222 3.0000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-2.3284 1.4190 0.0000 -0.9630 9.5741 9.5741 0.5434 -0.9630 1.5656 89.0941

numHBa Qs Qsv
3.0000 0.7934 0.5142
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.1008 -0.2752 0.1376 1.3233 143.6209 1.3333 2.5178 1.4579 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
353.5459 0.0000 0.0000 0.0000 1.1329 3.5309 29.0000 6.0000 2.2222 3.0000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
3.3964 0.0000 0.0000 -0.1975 0.0000 4.9938 0.0000 -0.0988 1.5656 165.8340

numHBa Qs Qsv
4.0000 0.9817 0.6363

1,1,2,2 Tetrachloroethylene
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.8902 -0.3693 0.3405 1.3337 131.8441 1.2761 2.4067 0.3266 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
356.3286 0.4084 0.1650 0.4639 0.7559 7.0091 46.0000 7.0000 3.0612 2.6667

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-2.1330 0.0000 0.0000 -1.0046 9.7564 9.7564 0.7045 -1.0046 1.8842 121.1601

numHBa Qs Qsv
3.0000 0.9754 0.5143

Cysteine
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
2.1810 -0.3839 0.3404 1.3733 147.1524 1.8214 2.5378 0.6947 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
334.4675 0.2137 0.1685 0.5063 0.0934 7.4700 65.0000 8.0000 3.1111 2.8125

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-1.6909 3.5531 0.0000 -0.9306 10.0157 10.0157 0.4723 -0.9306 1.9438 117.1478

numHBa Qs Qsv
3.0000 1.3961 0.6544

Valine
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
2.4695 -0.3804 0.3381 1.3550 139.1301 1.8214 2.2186 0.4430 0.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
330.7648 0.0731 0.2824 0.4321 0.5552 9.2889 65.0000 8.0000 3.1111 2.8125

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-2.7039 1.3321 0.0000 -1.1806 9.8557 9.8557 0.5834 -1.1806 1.9438 119.1204

numHBa Qs Qsv
4.0000 1.0413 0.4881

Threonine
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
2.7808 -0.3300 0.2614 1.5190 198.2787 1.2071 3.3662 0.2518 5.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
1187.2531 0.0914 0.5505 0.5782 1.1690 8.5844 143.0000 10.0000 5.7600 5.5309

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-3.3935 0.0000 0.0000 -0.9333 10.1372 10.1372 0.5321 -0.9333 2.6608 146.1894

numHBa Qs Qsv
4.0000 1.8519 0.6173

Lysine
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
3.3170 -0.4237 0.2621 1.4623 175.5508 1.4122 2.3043 0.2756 4.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
551.9764 0.4996 0.0595 0.5835 1.5535 10.8249 96.0000 9.0000 3.9200 4.5000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-3.2338 0.0000 0.0000 -1.9179 19.8950 9.9931 0.8948 -1.2141 2.2608 132.1191

numHBa Qs Qsv
5.0000 1.0755 0.4315

Asparagine
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
3.1448 -0.3271 0.2626 1.4108 158.6067 1.4122 2.2393 0.2647 4.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
585.1631 0.1482 0.2765 0.3165 2.3017 11.4988 96.0000 9.0000 3.9200 4.5000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-2.5518 0.0000 0.0000 -2.4979 19.6173 9.8464 0.9503 -1.2941 2.2608 133.1039

numHBa Qs Qsv
5.0000 0.9598 0.3851

Aspartic Acid
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
2.2816 -0.3254 0.2614 1.4852 185.9375 1.2071 3.7686 0.2518 4.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
1008.2385 0.2751 0.5057 0.6133 1.7373 7.4537 102.0000 9.0000 4.8395 4.5000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-1.5630 1.9252 0.0000 -0.9129 10.0709 10.0709 0.4899 -0.9129 2.4438 149.2138

numHBa Qs Qsv
4.0000 1.7062 0.6495

Methionine
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
2.9463 -0.3254 0.2619 1.4658 192.9965 1.5830 3.1553 0.3909 12.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
921.0010 0.2561 0.0406 0.3223 4.2728 9.3994 352.0000 9.0909 4.1327 2.8444

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-2.4299 0.0000 3.0483 -1.0004 10.2662 10.2662 0.8712 -1.0004 2.4982 155.1564

numHBa Qs Qsv
4.0000 1.9843 0.5330

Histidine
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.2254 -0.1025 0.1021 1.2646 133.7207 0.0000 2.0000 0.0000 6.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
88.4166 0.0000 0.0000 0.0000 1.3002 0.0000 90.0000 4.1667 2.2222 1.3333

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
1.9516 0.0000 12.0000 0.0000 0.0000 2.0000 1.0531 2.0000 1.5219 78.1136

numHBa Qs Qsv
0.0000 2.2500 0.9375

Benzene
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.3028 -0.1090 0.1052 1.3300 154.5761 0.4082 2.4107 0.1925 8.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
197.2618 0.0017 0.0000 0.0529 1.4244 0.3449 131.0000 5.1429 2.3438 1.5000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
2.6571 2.0833 10.2616 0.0000 0.0000 2.0833 0.4868 1.3218 1.7608 92.1405

numHBa Qs Qsv
0.0000 2.8421 1.1117

Toluene
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.6683 -0.2276 0.1962 1.3246 149.2555 0.4082 2.1343 0.0861 8.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
191.5561 0.0921 0.0000 0.1106 2.5196 2.8938 131.0000 5.1429 2.3438 1.5000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
1.2356 0.0000 8.7127 0.0000 0.0000 8.6322 1.1011 0.3218 1.7608 94.1130

numHBa Qs Qsv
1.0000 1.7008 0.6653

Phenol
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.5028 -0.1117 0.1095 1.4038 176.7742 0.4928 2.9713 0.2539 10.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
339.1219 0.0082 0.0000 0.0719 1.7560 0.6589 184.0000 6.1250 3.1111 1.8000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
3.1435 2.1620 10.4552 0.0000 0.0000 2.1620 0.4047 1.1397 2.0597 106.1674

numHBa Qs Qsv
0.0000 3.4315 1.1617

Ethylbenzene
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.6713 -0.2176 0.2041 1.3835 183.1283 1.4783 3.0955 0.6008 14.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
675.1678 0.0302 0.0000 0.0327 2.6672 6.3046 243.0000 7.1111 2.7222 1.7041

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
2.8589 0.0000 4.5058 0.0000 0.0000 8.8531 1.2591 0.0565 2.0375 163.0032

numHBa Qs Qsv
3.0000 1.8462 0.6268

4,6 Dichlorophenol
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.9400 -0.2120 0.2078 1.4810 230.9885 3.6427 4.5583 2.3038 24.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
1081.9465 0.0544 0.0000 0.0830 4.4959 10.9893 486.0000 10.0833 3.3951 1.5625

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
4.9449 0.0000 0.0000 0.0000 0.0000 9.2010 2.6885 -0.3632 2.1339 266.3383

numHBa Qs Qsv
6.0000 2.1552 0.5987

2,3,4,5,6 Pentachlorophenol
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
2.7005 -0.4222 0.5951 1.4377 183.7826 1.0404 2.5169 0.1970 12.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
437.7393 0.0286 0.0000 0.5942 1.1659 5.8751 239.0000 7.1111 3.2397 2.0000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
1.4691 0.0000 8.1666 0.0000 10.1176 10.1176 1.1547 -0.1667 2.1499 124.1191

numHBa Qs Qsv
3.0000 1.6137 0.5146

Nitrobenzene
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2,4 Dinitrotoluene

ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
5.0709 -0.5651 0.7838 1.5199 231.2349 2.4994 3.4504 0.6557 26.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
1000.4230 0.0792 0.0493 0.1519 0.7408 13.1531 611.0000 11.0769 4.4815 2.7211

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
1.5672 1.5900 3.8448 0.0000 20.9126 10.5111 0.7100 -0.3825 2.4961 184.1515

numHBa Qs Qsv
6.0000 1.9346 0.4674
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
3.4563 -0.3994 0.3780 1.4646 231.4523 2.3237 5.3203 1.0329 26.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
1910.8380 0.4130 0.1644 0.5162 1.4364 8.9442 905.0000 13.0667 5.9150 4.1653

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
3.7567 6.0569 7.8716 -0.7717 10.7624 10.7624 0.4304 -0.7717 2.9862 206.2847

numHBa Qs Qsv
2.0000 4.1570 0.8468

Ibuprofen
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
7.8037 -0.6714 1.8239 1.6067 273.6969 3.1755 6.7345 1.9643 28.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
2651.7883 0.1304 0.5221 0.6457 9.9741 13.9112 1029.0000 14.0625 6.0744 4.0768

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
2.2530 2.7892 5.7279 0.0000 10.5226 10.5226 0.8433 -2.7628 3.0079 264.2188

numHBa Qs Qsv
7.0000 3.2115 0.6142

Methyl Parathion
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4 - Nonylphenol

ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
3.3373 -0.2271 0.1956 1.7495 337.1841 0.8413 6.6056 0.3055 23.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
5120.7363 0.0529 0.0000 0.1665 3.2246 4.5156 1178.0000 14.0625 9.0741 7.0582

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
6.0608 2.2548 7.5893 0.0000 0.0000 9.1487 0.3349 0.3642 3.4482 220.3549

numHBa Qs Qsv
1.0000 6.4319 1.0887
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
6.4551 -0.6716 1.8678 1.6867 298.2288 3.3582 8.7074 2.2281 38.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
2999.8074 0.7388 0.0000 0.7394 1.5261 14.9426 1335.0000 16.0556 6.9632 4.5660

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
4.7570 3.5701 1.4220 0.0000 0.0000 5.9377 0.6322 -2.9185 2.9677 350.5900

numHBa Qs Qsv
8.0000 4.4586 0.7655

Clorpyrifos
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Bisphenol A

ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
3.7346 -0.2257 0.1963 1.5936 296.2599 3.7281 5.5899 1.9360 44.0000 2.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
2245.0769 0.1135 0.0000 0.1298 1.6861 9.0630 1950.0000 13.4321 5.3254 3.0625

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
3.6500 4.2337 14.4432 0.0000 0.0000 9.2963 0.6307 -0.1514 2.9637 228.2908

numHBa Qs Qsv
2.0000 4.8217 0.8029
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
4.1083 -0.2197 0.1958 1.7229 378.1116 2.7227 6.9613 1.1601 53.0000 2.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
3323.4529 0.1687 0.0000 0.1801 3.0729 9.3131 2638.0000 16.3719 7.8520 4.2500

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
3.9051 4.2743 14.6640 2.5522 0.0000 9.4107 0.5420 0.2842 3.1174 268.3556

numHBa Qs Qsv
2.0000 6.1235 0.8420

Diethylstilbestrol
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
2.1113 -0.1014 0.1108 1.4586 251.9400 1.8265 4.8154 0.7775 55.0000 3.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
903.6428 0.0095 0.0000 0.0095 3.6724 1.3670 3511.0000 9.2422 3.8678 1.6483

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
4.6080 0.0000 21.3670 0.0000 0.0000 2.1782 1.1676 1.3113 2.4920 178.2334

numHBa Qs Qsv
0.0000 5.6044 0.9055

Phenanthrene
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
2.6157 -0.2819 0.4169 1.3867 186.6669 1.8843 3.1438 0.4881 31.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
440.7403 0.0001 0.0000 1.0915 0.0243 9.8379 874.0000 7.6389 2.8028 1.2098

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
1.3456 0.0000 6.5303 -1.1007 21.6657 10.8329 1.2455 -0.5504 2.1152 148.1180

numHBa Qs Qsv
3.0000 1.9685 0.4745

Phthalic Anhydride
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
3.8160 -0.4001 0.4072 1.6739 304.4620 1.9455 5.1354 0.5054 32.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
1063.6456 0.3112 0.0000 0.6795 4.6372 13.8608 1084.0000 14.0625 7.3500 4.0768

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
2.6343 3.4263 6.4429 -1.0164 23.0884 11.5442 0.5929 -0.5082 2.8537 222.2408

numHBa Qs Qsv
4.0000 3.5625 0.6494

Diethylphthalate
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
1.3832 -0.1215 0.1260 1.3847 188.1796 3.6427 5.9279 4.4811 24.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
1161.5708 0.1611 0.0920 0.1855 0.1916 10.6204 486.0000 10.0833 3.3951 1.5625

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
3.5566 0.0000 0.0000 0.0000 0.0000 5.8812 0.9092 -0.4367 2.1339 290.8316

numHBa Qs Qsv
6.0000 2.6989 0.7497

Lindane
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Caffeine

ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
3.7109 -0.4136 0.3720 1.5417 247.7542 3.7053 4.1079 1.1570 47.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
737.9059 0.1687 0.0906 0.7400 0.4252 11.5069 1538.0000 10.5156 3.5388 1.4545

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-0.5099 4.7732 1.5194 -0.6766 23.1613 11.6720 0.7578 -0.3600 2.2940 194.1930

numHBa Qs Qsv
5.0000 3.0853 0.6559
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
3.2615 -0.2860 0.2630 1.5516 291.5823 2.4350 6.6852 1.0770 45.0000 1.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
1733.9794 0.0377 0.4024 0.4135 1.2547 10.5848 1348.0000 16.0556 8.2268 3.9958

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
2.9333 5.7337 6.1058 -0.1304 11.9527 11.9527 0.5353 -0.1304 2.6952 269.7713

numHBa Qs Qsv
4.0000 5.4512 0.8973

2-chloro-2'-6'-diethyl-N-methoxymethyl-acetanilide (Alachlor)
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
3.0799 -0.2586 0.3129 1.7141 314.0870 1.5130 6.1484 0.5879 19.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
4073.7322 0.4029 0.1934 0.7591 10.2766 7.4392 1226 15.0588 9 5.9282

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
0.646 3.7393 1.7105 0.5038 0 8.3916 0.6245 0.5038 3.3449 252.3432

numHBa Qs Qsv
6 4.9502 0.8136

Cimetidine
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
6.6799 -0.3979 0.3655 1.6594 317.7363 1.7029 5.2398 0.5227 24.0000 0.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
3381.7441 0.0017 0.7572 0.7572 9.8344 26.5053 910.0000 20.0000 10.6875 12.4898

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-2.9415 0.0000 0.0000 -5.1151 42.0844 10.5211 1.1567 -1.2788 3.1503 290.2298

numHBa Qs Qsv
10.0000 2.4998 0.4062

Ethylenediaminetetraacetic Acid
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17 a Estradiol
ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6

3.8151 -0.3052 0.1949 1.4357 226.2367 3.5726 7.7366 2.4643 90.0000 3.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
2622.6062 0.1989 0.1080 0.3222 3.0584 10.0301 13763.0000 12.7190 4.7769 2.0000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
3.4696 0.0000 5.9495 0.0000 0.0000 10.1132 0.5784 -0.0350 2.9420 258.3605

numHBa Qs Qsv
2.0000 6.8009 0.8635
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
4.1119 -0.3024 0.2905 1.5212 292.9848 5.0919 7.9452 3.4729 97.0000 3.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
2765.3069 0.4227 0.0913 0.4833 1.2049 12.0300 15139.0000 13.6484 4.7500 1.9608

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
3.6617 2.2178 5.8977 0.5115 12.2620 12.2620 0.5691 -0.0322 2.9579 270.3715

numHBa Qs Qsv
2.0000 6.8488 0.8668

Estrone
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
4.1977 -0.3194 0.3163 1.4550 185.2442 3.5726 8.1516 2.7452 90.0000 3.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
2680.8655 0.0469 0.0522 0.6833 1.2642 10.4973 13763.0000 12.7190 4.7769 2.0000

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
2.6015 0.0000 0.0000 1.8233 11.5941 11.5941 0.5594 -0.0178 2.9420 260.3763

numHBa Qs Qsv
2.0000 6.9197 0.8785

Testosterone
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
4.7039 -0.3173 0.3155 1.5482 294.9027 4.0170 8.8862 3.0945 98.0000 3.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
3542.6272 0.1935 0.4017 0.5362 12.7234 11.9352 17841.0000 14.5833 5.5710 2.3965

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
2.7916 1.7992 0.0000 2.2487 23.5431 11.8785 0.5785 0.3527 3.1115 286.4142

numHBa Qs Qsv
2.0000 7.5130 0.8944

Progesterone
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
5.1725 -0.3091 0.1852 1.6324 366.9083 3.8018 11.7428 3.6830 102.0000 3.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
7507.9116 0.1026 0.0517 0.2109 0.7824 7.6142 28571.0000 18.3673 7.9350 3.8400

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
7.1009 4.7328 0.0000 1.6613 0.0000 10.0320 0.1403 -0.0351 3.5795 345.5889

numHBa Qs Qsv
1.0000 13.2866 1.3287

Cholesterol
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
5.5836 -0.3127 0.1859 1.6526 370.1698 4.6023 12.7606 4.3974 104.0000 3.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
7152.4863 0.0637 0.1380 0.2319 0.6953 6.8588 33956.0000 20.2800 8.7885 4.1600

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
7.5768 7.2236 0.0000 0.0000 0.0000 10.1025 0.3646 0.0211 3.6533 374.6506

numHBa Qs Qsv
1.0000 14.8095 1.4051

beta Sitostanol-n-hydrate
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
5.6687 -0.3800 0.4588 1.5852 311.2392 4.4359 8.1339 1.5796 101.0000 3.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
3400.7456 1.2467 0.1828 1.4960 3.8252 23.6997 11660.0000 17.4156 6.9575 3.4856

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-0.5653 0.0000 2.8906 -2.2021 23.7581 14.6077 0.6899 -1.2751 3.1701 331.3466

numHBa Qs Qsv
7.0000 5.3576 0.5736

Ciprofloxacin
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
8.5480 -0.4552 0.4188 1.6843 399.9212 9.0664 9.5882 3.5123 168.0000 4.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
5550.8569 0.5439 0.1154 0.7765 7.7079 47.3737 42500 24.1349 8.3405 3.3333

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-0.3782 3.0591 4.1574 -6.4174 38.1444 13.1715 0.8141 -2.7275 3.1951 430.4143

numHBa Qs Qsv
10 5.6223 0.5351

Tetracycline
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
3.7291 -0.2989 0.1963 1.4480 243.4733 5.5732 8.1021 3.3159 162.0000 4.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
1856.4359 0.1326 0.0280 0.4259 1.9912 13.6669 40612.0000 14.3521 4.7619 1.6436

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
1.5614 3.9071 4.2046 0.0000 0.0000 10.5542 0.6335 -0.5386 2.7299 299.3696

numHBa Qs Qsv
4.0000 7.9154 0.8824

Codeine
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
8.3023 -0.3723 0.3991 1.7216 422.4388 9.4271 10.0157 3.9079 182.0000 4.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
5809.5972 1.3701 0.6225 1.5197 4.7566 49.0391 45143 25.1037 8.5873 3.3704

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
0.6689 4.6519 4.438 -6.6737 38.446 13.317 0.8165 -2.8948 3.1767 444.4412

numHBa Qs Qsv
10 5.9729 0.5578

Doxycycline
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ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 nxp5 nxch6
11.3255 -0.3412 0.3587 1.6139 351.6028 6.8221 12.6401 2.1928 94.0000 2.0000

Iy Py Pz P Q sumdelI Wt k1 k2 k3
6838.5083 0.5434 0.1510 0.8247 2.9768 58.3048 27758.0000 32.5137 15.2908 9.8097

LogP SsCH3 SaaCH SdssC SdO Gmax Hmin Gmin idcbar fw
-2.9301 0.0000 0.0000 -1.3692 24.8209 12.5329 0.8824 -1.7761 3.5862 554.5457

numHBa Qs Qsv
15.0000 6.8278 0.5122

Erythromycin
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Appendix 3. 

  All Compound QSAR Molecular Descriptors and Molecular Properties 
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Appendix 4 

General Instructions for Operating QSAR Descriptor 
ANN Models Describing Compound Interactions 
with RO Membranes 
 
 
Introduction: 
 
 The models described in this study have been embedded as macros in Excel 
workbooks on a CD-ROM, and as such are being made available for experimentation.   
There are six workbooks altogether; one each for CA and four PA membranes used in the 
study, and one for the “Universal” PA model.  In order to operate these models, the user 
must have Excel 2000 or later installed, and macros enabled. 
 Each of the workbooks consists of two sheets.  The first spreadsheet is for data 
I/O, and is where the user enters information regarding the specific molecule being 
tested, its salient QSAR molecular descriptors, and information regarding operating 
conditions that will be used to predict membrane performance based on the results of this 
study (due to the complexity of parameters involved with field performance, these 
specific predictions may vary from a specific field site; however, they may be used in a 
comparative sense to examine the behavior of a series of compounds relative to each 
other).  The second sheet is a graphic representation of the interaction of the compound 
with the membrane, and plots relative solute flux (P-flux) against membrane association 
flux (M-Flux).  This diagram provides the user with a visual representation of the 
predicted interaction of the compound with the membrane. 
 
Entering Data in the data spreadsheet: 

 
  The used inputs information required by the model by filling in the gray boxes.  
Care should be taken to only modify the values in these boxes and not to change the 
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values or formulae in any of the other cells in the sheet, or the model will not work 
correctly. 
 
Limitations to the range of values for the QSAR molecular descriptors: 
 
The QSAR molecular descriptors used in the models must be constrained within the 
limits used to train the artificial neural networks.  If values outside thee limits are used, 
predictability of the models may be severely compromised.  These limits, for all the 
models, are shown below: 

  
 ABSQ MaxNeg MaxQp Ovality Surface xpc4 xv1 xvpc4 

Minimum 0.870199 -0.67159 0.060379 1.215067 82.68226 0 0.781474 0 
Maximum 11.3255 -0.10137 1.867779 1.749453 422.4388 9.427053 12.76057 4.481088 
         
 nxp5 nxch6 Iy Py Pz P Q sumdelI 

Minimum 0 0 48.11783 0 0 0 0.0243 0 
Maximum 182 4 7507.912 1.370073 0.757215 1.519661 12.72342 58.3048 
         
 Wt k1 k2 k3 LogP SsCH3 SaaCH SdssC 

Minimum 4 3 1.333333 0 -3.39353 0 0 -6.6737 
Maximum 45143 32.5137 15.2908 12.4898 7.5768 7.2236 21.367 2.5522 
         
 SdO Gmax Hmin Gmin idcbar fw numHBa Qs 

Minimum 0 2 0 -2.9185 0.9183 46.069 0 0.4224 
Maximum 42.0844 14.6077 2.6885 2 3.6533 554.5457 15 14.8095 
         
 Qsv        
Minimum 0.385122        
Maximum 1.4051        
       
Model Output: 
 As data are entered, the embedded macros will determine the predicted relative P, 
M and R Fluxes for the compound being evaluated, and will display them on the sheet 
(below). 
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Explanation of Output Data: 

 
 The solute feed flux represents the estimated actual specific feed flux (actual F-
Flux) of the solute (in micromoles of solute/m2 membrane*min per micromolar solute 
concentration in the feed the feed) to the membrane based on user-defined values of 
solute concentration and membrane water flux.  The relative solute feed flux (F-Flux) is, 
by definition, always defined as 100 (% of the feed flux). 
 The modeled relative solute fluxes represent the predicted values from the ANN 
models describing the relative P-Flux (the proportion of the mass interacting with the 
membrane that passes into the product), the relative M-Flux (the proportion of the solute 
interacting with the membrane that remains bound on or in the membrane) and the 
relative R-Flux (the proportion of the solute that fails to interact with the membrane and 
remains unassociated in the feed).  For each of these fluxes, the spreadsheet calculates 
specific P, M and R solute fluxes (in micromoles/m2*min per micromolar solute in the 
feed) using the relative flux data and user-specified values for feed solute concentration 
and water flux.  The spreadsheed also estimates the modeled concentration of solute in 

the product, in micromoles/liter. 
 The modeled solute F-Flux represents a “virtual mass balance” obtained by 
summing the values of the relative P, M and R-Fluxes.  Theoretically, the sum of these 
relative fluxes should total 100 (the value of the relative F-Flux).  The model residual 

error represents the difference between the theoretical relative F-Flux and the value 
obtained from summation of the modeled flux outputs.  This value reflects the deviation 
of the membrane models from an ideal response, and may be used as an evaluation 
criterion to determine whether or not the models have provided a reasonable prediction of 
the various solute-membrane interactions. 
 Estimated Percent rejection of the solute by the membrane is estimated based 
on two criteria.  The percent rejection based on the relative solute P-Flux represents 
rejection calculated based on the P-Flux.  This is the “traditional” expression of RO 
membrane rejection, determined by the mass of solute passing through the membrane 
into the product.  This value represents the sum of two compound-membrane 
interactions; the ability of the membrane to act as a mechanical shield against the 
compound and the removal of the compound by binding on or in the membrane.  This, a 
high percent rejection determined by P-Flux may be due to strong rejection at the 
membrane surface or strong interaction of the compound with the membrane.  However, 
the percent rejection based on the relative solute R-Flux only describes rejection at the 
membrane surface, in which the membrane acts as a mechanical shield.  This result is 
significant, because compounds exhibiting a high rejection by this criterion are likely to 
be excluded from the RO product for extended periods of time, whereas, those 
compounds that are principally removed by interactions with the membrane may, in time 
as the membrane saturates, begin to break through significantly into the product.  
 
Evaluating Model Results: 
  
 The Modeled Solute F-Flux should approach 100% if all models are working 
correctly.  A practical model residual error is +/-25. (a 25% model noise band).  Values 
outside this range should be treated with suspicion, as this indicates a significant failure 



 297

of the “virtual mass balance” technique.  Furthermore, instances where solute rejection 
evaluated by the P-Flux significantly less than that evaluated by the R-Flux should be 
treated with suspicion, as in order for this to occur the M-Flux needs to be seriously 
below zero. 
 Because these results are predicted, it is possible to have relative fluxes in excess 
of 100 or less than zero.  Within error, this is acceptable; however, a value far outside 
these limits should be treated with suspicion.  
 
 


